## Chapter 6. Enums and Annotations(枚举和注解)
### Item 41: Use marker interfaces to define types(使用标记接口定义类型)
A marker interface is an interface that contains no method declarations but merely designates (or “marks”) a class that implements the interface as having some property. For example, consider the Serializable interface (Chapter 12). By implementing this interface, a class indicates that its instances can be written to an ObjectOutputStream (or “serialized”).
标记接口是一种不包含任何方法声明的接口,它只是指定(或「标记」)一个类,该类实现了具有某些属性的接口。例如,考虑 Serializable 接口(Chapter 12)。通过实现此接口,表示类的实例可以写入 ObjectOutputStream(或「序列化」)。
You may hear it said that marker annotations (Item 39) make marker interfaces obsolete. This assertion is incorrect. Marker interfaces have two advantages over marker annotations. First and foremost, **marker interfaces define a type that is implemented by instances of the marked class; marker annotations do not.** The existence of a marker interface type allows you to catch errors at compile time that you couldn’t catch until runtime if you used a marker annotation.
你可能听过一个说法:标记接口已经过时,更好的方式是标记注解([Item-39](/Chapter-6/Chapter-6-Item-39-Prefer-annotations-to-naming-patterns.md))。这个言论是错误的。与标记注解相比,标记接口有两个优点。首先,**标记接口定义的类型由标记类的实例实现;标记注解不会。** 标记接口类型的存在允许你在编译时捕获错误,如果你使用标记注解,则在运行时才能捕获这些错误。
Java’s serialization facility (Chapter 6) uses the Serializable marker interface to indicate that a type is serializable. The ObjectOutputStream.writeObject method, which serializes the object that is passed to it, requires that its argument be serializable. Had the argument of this method been of type Serializable, an attempt to serialize an inappropriate object would have been detected at compile time (by type checking). Compile-time error detection is the intent of marker interfaces, but unfortunately, the ObjectOutputStream.write API does not take advantage of the Serializable interface: its argument is declared to be of type Object, so attempts to serialize an unserializable object won’t fail until runtime.
Java 的序列化工具(Chapter 6)使用 Serializable 标记接口来表明一个类是可序列化的。`ObjectOutputStream.writeObject` 方法序列化传递给它的对象,它要求其参数是可序列化的。假设该方法的参数类型是 Serializable,那么在编译时(通过类型检查)就会检测到对不合适的对象进行序列化的错误。编译时错误检测是使用标记接口的目的,但不幸的是,`ObjectOutputStream.writeObject` 没有利用 Serializable 接口:它的参数被声明为 Object 类型,因此,如果尝试序列化一个不可序列化对象,直到运行时才会提示失败。
**译注 1:原文 `ObjectOutputStream.write` 有误,该方法的每种重载仅支持 int 类型和 byte[],应修改为 `ObjectOutputStream.writeObject`,其源码如下:**
```
public final void writeObject(Object obj) throws IOException {
if (enableOverride) {
writeObjectOverride(obj);
return;
}
try {
writeObject0(obj, false);
} catch (IOException ex) {
if (depth == 0) {
writeFatalException(ex);
}
throw ex;
}
}
```
**译注 2:使用 ObjectOutputStream.writeObject 的例子**
```
public class BaseClass implements Serializable {
private final int id;
private final String name;
public BaseClass(int id, String name) {
this.id = id;
this.name = name;
}
@Override
public String toString() {
return "id=" + id + ", name='" + name + '\'';
}
}
public class Main {
private void Out() throws IOException {
BaseClass obj = new BaseClass(1, "Mark");
try (ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(new File("out.txt")))) {
out.writeObject(obj);
}
}
private void In() throws IOException, ClassNotFoundException {
try (ObjectInputStream in = new ObjectInputStream(new FileInputStream(new File("out.txt")))) {
BaseClass obj = (BaseClass) in.readObject();
System.out.println(obj);
}
}
}
```
**Another advantage of marker interfaces over marker annotations is that they can be targeted more precisely.** If an annotation type is declared with target ElementType.TYPE, it can be applied to any class or interface. Suppose you have a marker that is applicable only to implementations of a particular interface. If you define it as a marker interface, you can have it extend the sole interface to which it is applicable, guaranteeing that all marked types are also subtypes of the sole interface to which it is applicable.
**标记接口相对于标记注解的另一个优点是可以更精确地定位它们。** 如果注解类型使用 `@Target(ElementType.TYPE)` 声明,它可以应用于任何类或接口。假设你有一个只适用于特定接口来实现的标记。如果将其定义为标记接口,则可以让它扩展其适用的惟一接口,确保所有标记的类型也是其适用的惟一接口的子类型。
Arguably, the Set interface is just such a restricted marker interface. It is applicable only to Collection subtypes, but it adds no methods beyond those defined by Collection. It is not generally considered to be a marker interface because it refines the contracts of several Collection methods, including add, equals, and hashCode. But it is easy to imagine a marker interface that is applicable only to subtypes of some particular interface and does not refine the contracts of any of the interface’s methods. Such a marker interface might describe some invariant of the entire object or indicate that instances are eligible for processing by a method of some other class (in the way that the Serializable interface indicates that instances are eligible for processing by ObjectOutputStream).
可以说,Set 接口就是这样一个受限的标记接口。它只适用于 Collection 的子类,但是除了 Collection 定义的方法之外,它不添加任何方法。它通常不被认为是一个标记接口,因为它细化了几个 Collection 方法的约定,包括 add、equals 和 hashCode。但是很容易想象一个标记接口只适用于某些特定接口的子类,而不细化任何接口方法的约定。这样的标记接口可能描述整个对象的某个不变量,或者表明实例能够利用其他类的方法进行处理(就像 Serializable 接口能够利用 ObjectOutputStream 进行处理一样)。
**The chief advantage of marker annotations over marker interfaces is that they are part of the larger annotation facility.** Therefore, marker annotations allow for consistency in annotation-based frameworks.
**相对于标记接口,标记注解的主要优势是它们可以是其他注解功能的一部分。** 因此,标记注解能够与基于使用注解的框架保持一致性。
So when should you use a marker annotation and when should you use a marker interface? Clearly you must use an annotation if the marker applies to any program element other than a class or interface, because only classes and interfaces can be made to implement or extend an interface. If the marker applies only to classes and interfaces, ask yourself the question “Might I want to write one or more methods that accept only objects that have this marking?” If so, you should use a marker interface in preference to an annotation. This will make it possible for you to use the interface as a parameter type for the methods in question, which will result in the benefit of compile-time type checking. If you can convince yourself that you’ll never want to write a method that accepts only objects with the marking, then you’re probably better off using a marker annotation. If, additionally, the marking is part of a framework that makes heavy use of annotations, then a marker annotation is the clear choice.
那么什么时候应该使用标记注解,什么时候应该使用标记接口呢?显然,如果标记应用于类或接口之外的任何程序元素,则必须使用标记注解,因为只有类和接口才能实现或扩展接口。如果标记只适用于类和接口,那么可以问自己这样一个问题:「我是否可以编写一个或多个方法,只接受具有这种标记的对象?」如果是这样,你应该使用标记接口而不是标记注解。这将使你能够将接口用作相关方法的参数类型,这将带来编译时类型检查的好处。如果你确信自己永远不会编写只接受带有标记的对象的方法,那么最好使用标记注解。此外,如果框架大量使用注解,那么标记注解就是明确的选择。
In summary, marker interfaces and marker annotations both have their uses. If you want to define a type that does not have any new methods associated with it, a marker interface is the way to go. If you want to mark program elements other than classes and interfaces or to fit the marker into a framework that already makes heavy use of annotation types, then a marker annotation is the correct choice. **If you find yourself writing a marker annotation type whose target is ElementType.TYPE, take the time to figure out whether it really should be an annotation type or whether a marker interface would be more appropriate.**
总之,标记接口和标记注解都有各自的用途。如果你想要定义一个没有与之关联的新方法的类型,可以使用标记接口。如果你希望标记类和接口之外的程序元素,或者将标记符放入已经大量使用注解类型的框架中,那么标记注解就是正确的选择。如果你发现自己编写的标记注解类型有 `@Target(ElementType.TYPE)` 声明(**译注:意在说明既可以用标记注解,也可以用标记接口的情况**),那么请花时间弄清楚究竟应该用注解类型,还是标记接口更合适。
In a sense, this item is the inverse of Item 22, which says, “If you don’t want to define a type, don’t use an interface.” To a first approximation, this item says, “If you do want to define a type, do use an interface.”
从某种意义上说,本条目与 [Item-22](/Chapter-4/Chapter-4-Item-22-Use-interfaces-only-to-define-types.md) 的说法相反,也就是说,「如果不想定义类型,就不要使用接口。」,与本条目应用场景适应的说法是,「如果你确实想定义类型,那么就要使用接口。」
---
**[Back to contents of the chapter(返回章节目录)](/Chapter-6/Chapter-6-Introduction.md)**
- **Previous Item(上一条目):[Item 40: Consistently use the Override annotation(坚持使用 @Override 注解)](/Chapter-6/Chapter-6-Item-40-Consistently-use-the-Override-annotation.md)**
- **Next Item(下一条目):[Chapter 7 Introduction(章节介绍)](/Chapter-7/Chapter-7-Introduction.md)**
- Chapter 2. Creating and Destroying Objects(创建和销毁对象)
- Item 1: Consider static factory methods instead of constructors(考虑以静态工厂方法代替构造函数)
- Item 2: Consider a builder when faced with many constructor parameters(在面对多个构造函数参数时,请考虑构建器)
- Item 3: Enforce the singleton property with a private constructor or an enum type(使用私有构造函数或枚举类型实施单例属性)
- Item 4: Enforce noninstantiability with a private constructor(用私有构造函数实施不可实例化)
- Item 5: Prefer dependency injection to hardwiring resources(依赖注入优于硬连接资源)
- Item 6: Avoid creating unnecessary objects(避免创建不必要的对象)
- Item 7: Eliminate obsolete object references(排除过时的对象引用)
- Item 8: Avoid finalizers and cleaners(避免使用终结器和清除器)
- Item 9: Prefer try with resources to try finally(使用 try-with-resources 优于 try-finally)
- Chapter 3. Methods Common to All Objects(对象的通用方法)
- Item 10: Obey the general contract when overriding equals(覆盖 equals 方法时应遵守的约定)
- Item 11: Always override hashCode when you override equals(当覆盖 equals 方法时,总要覆盖 hashCode 方法)
- Item 12: Always override toString(始终覆盖 toString 方法)
- Item 13: Override clone judiciously(明智地覆盖 clone 方法)
- Item 14: Consider implementing Comparable(考虑实现 Comparable 接口)
- Chapter 4. Classes and Interfaces(类和接口)
- Item 15: Minimize the accessibility of classes and members(尽量减少类和成员的可访问性)
- Item 16: In public classes use accessor methods not public fields(在公共类中,使用访问器方法,而不是公共字段)
- Item 17: Minimize mutability(减少可变性)
- Item 18: Favor composition over inheritance(优先选择复合而不是继承)
- Item 19: Design and document for inheritance or else prohibit it(继承要设计良好并且具有文档,否则禁止使用)
- Item 20: Prefer interfaces to abstract classes(接口优于抽象类)
- Item 21: Design interfaces for posterity(为后代设计接口)
- Item 22: Use interfaces only to define types(接口只用于定义类型)
- Item 23: Prefer class hierarchies to tagged classes(类层次结构优于带标签的类)
- Item 24: Favor static member classes over nonstatic(静态成员类优于非静态成员类)
- Item 25: Limit source files to a single top level class(源文件仅限有单个顶层类)
- Chapter 5. Generics(泛型)
- Item 26: Do not use raw types(不要使用原始类型)
- Item 27: Eliminate unchecked warnings(消除 unchecked 警告)
- Item 28: Prefer lists to arrays(list 优于数组)
- Item 29: Favor generic types(优先使用泛型)
- Item 30: Favor generic methods(优先使用泛型方法)
- Item 31: Use bounded wildcards to increase API flexibility(使用有界通配符增加 API 的灵活性)
- Item 32: Combine generics and varargs judiciously(明智地合用泛型和可变参数)
- Item 33: Consider typesafe heterogeneous containers(考虑类型安全的异构容器)
- Chapter 6. Enums and Annotations(枚举和注解)
- Item 34: Use enums instead of int constants(用枚举类型代替 int 常量)
- Item 35: Use instance fields instead of ordinals(使用实例字段替代序数)
- Item 36: Use EnumSet instead of bit fields(用 EnumSet 替代位字段)
- Item 37: Use EnumMap instead of ordinal indexing(使用 EnumMap 替换序数索引)
- Item 38: Emulate extensible enums with interfaces(使用接口模拟可扩展枚举)
- Item 39: Prefer annotations to naming patterns(注解优于命名模式)
- Item 40: Consistently use the Override annotation(坚持使用 @Override 注解)
- Item 41: Use marker interfaces to define types(使用标记接口定义类型)
- Chapter 7. Lambdas and Streams(λ 表达式和流)
- Item 42: Prefer lambdas to anonymous classes(λ 表达式优于匿名类)
- Item 43: Prefer method references to lambdas(方法引用优于 λ 表达式)
- Item 44: Favor the use of standard functional interfaces(优先使用标准函数式接口)
- Item 45: Use streams judiciously(明智地使用流)
- Item 46: Prefer side effect free functions in streams(在流中使用无副作用的函数)
- Item 47: Prefer Collection to Stream as a return type(优先选择 Collection 而不是流作为返回类型)
- Item 48: Use caution when making streams parallel(谨慎使用并行流)
- Chapter 8. Methods(方法)
- Item 49: Check parameters for validity(检查参数的有效性)
- Item 50: Make defensive copies when needed(在需要时制作防御性副本)
- Item 51: Design method signatures carefully(仔细设计方法签名)
- Item 52: Use overloading judiciously(明智地使用重载)
- Item 53: Use varargs judiciously(明智地使用可变参数)
- Item 54: Return empty collections or arrays, not nulls(返回空集合或数组,而不是 null)
- Item 55: Return optionals judiciously(明智地的返回 Optional)
- Item 56: Write doc comments for all exposed API elements(为所有公开的 API 元素编写文档注释)
- Chapter 9. General Programming(通用程序设计)
- Item 57: Minimize the scope of local variables(将局部变量的作用域最小化)
- Item 58: Prefer for-each loops to traditional for loops(for-each 循环优于传统的 for 循环)
- Item 59: Know and use the libraries(了解并使用库)
- Item 60: Avoid float and double if exact answers are required(若需要精确答案就应避免使用 float 和 double 类型)
- Item 61: Prefer primitive types to boxed primitives(基本数据类型优于包装类)
- Item 62: Avoid strings where other types are more appropriate(其他类型更合适时应避免使用字符串)
- Item 63: Beware the performance of string concatenation(当心字符串连接引起的性能问题)
- Item 64: Refer to objects by their interfaces(通过接口引用对象)
- Item 65: Prefer interfaces to reflection(接口优于反射)
- Item 66: Use native methods judiciously(明智地使用本地方法)
- Item 67: Optimize judiciously(明智地进行优化)
- Item 68: Adhere to generally accepted naming conventions(遵守被广泛认可的命名约定)
- Chapter 10. Exceptions(异常)
- Item 69: Use exceptions only for exceptional conditions(仅在确有异常条件下使用异常)
- Item 70: Use checked exceptions for recoverable conditions and runtime exceptions for programming errors(对可恢复情况使用 checked 异常,对编程错误使用运行时异常)
- Item 71: Avoid unnecessary use of checked exceptions(避免不必要地使用 checked 异常)
- Item 72: Favor the use of standard exceptions(鼓励复用标准异常)
- Item 73: Throw exceptions appropriate to the abstraction(抛出能用抽象解释的异常)
- Item 74: Document all exceptions thrown by each method(为每个方法记录会抛出的所有异常)
- Item 75: Include failure capture information in detail messages(异常详细消息中应包含捕获失败的信息)
- Item 76: Strive for failure atomicity(尽力保证故障原子性)
- Item 77: Don’t ignore exceptions(不要忽略异常)
- Chapter 11. Concurrency(并发)
- Item 78: Synchronize access to shared mutable data(对共享可变数据的同步访问)
- Item 79: Avoid excessive synchronization(避免过度同步)
- Item 80: Prefer executors, tasks, and streams to threads(Executor、task、流优于直接使用线程)
- Item 81: Prefer concurrency utilities to wait and notify(并发实用工具优于 wait 和 notify)
- Item 82: Document thread safety(文档应包含线程安全属性)
- Item 83: Use lazy initialization judiciously(明智地使用延迟初始化)
- Item 84: Don’t depend on the thread scheduler(不要依赖线程调度器)
- Chapter 12. Serialization(序列化)
- Item 85: Prefer alternatives to Java serialization(优先选择 Java 序列化的替代方案)
- Item 86: Implement Serializable with great caution(非常谨慎地实现 Serializable)
- Item 87: Consider using a custom serialized form(考虑使用自定义序列化形式)
- Item 88: Write readObject methods defensively(防御性地编写 readObject 方法)
- Item 89: For instance control, prefer enum types to readResolve(对于实例控制,枚举类型优于 readResolve)
- Item 90: Consider serialization proxies instead of serialized instances(考虑以序列化代理代替序列化实例)