## Chapter 9. General Programming(通用程序设计)
### Item 57: Minimize the scope of local variables(将局部变量的作用域最小化)
This item is similar in nature to Item 15, “Minimize the accessibility of classes and members.” By minimizing the scope of local variables, you increase the readability and maintainability of your code and reduce the likelihood of error.
本条目在性质上类似于 [Item-15](/Chapter-4/Chapter-4-Item-15-Minimize-the-accessibility-of-classes-and-members.md),即「最小化类和成员的可访问性」。通过最小化局部变量的范围,可以提高代码的可读性和可维护性,并降低出错的可能性。
Older programming languages, such as C, mandated that local variables must be declared at the head of a block, and some programmers continue to do this out of habit. It’s a habit worth breaking. As a gentle reminder, Java lets you declare variables anywhere a statement is legal (as does C, since C99).
较老的编程语言,如 C 语言,强制要求必须在代码块的头部声明局部变量,一些程序员出于习惯目前继续这样做。这是一个应改变的习惯。温馨提醒,Java 允许你在任何能够合法使用语句的地方声明变量(这与 C99 标准后 C 语言一样)。
**The most powerful technique for minimizing the scope of a local variable is to declare it where it is first used.** If a variable is declared before it is used, it’s just clutter—one more thing to distract the reader who is trying to figure out what the program does. By the time the variable is used, the reader might not remember the variable’s type or initial value.
**将局部变量的作用域最小化,最具说服力的方式就是在第一次使用它的地方声明。** 如果一个变量在使用之前声明了,代码会变得很混乱,这是另一件分散读者注意力的事情,因为读者正在试图弄清楚程序的功能。在使用到该变量时,读者可能不记得变量的类型或初始值。
Declaring a local variable prematurely can cause its scope not only to begin too early but also to end too late. The scope of a local variable extends from the point where it is declared to the end of the enclosing block. If a variable is declared outside of the block in which it is used, it remains visible after the program exits that block. If a variable is used accidentally before or after its region of intended use, the consequences can be disastrous.
过早地声明局部变量会导致其作用域开始得太早,而且结束得过晚。局部变量的范围应该从声明它的地方直到封闭块的末尾。如果变量在使用它的代码块外部声明,则在程序退出该块之后它仍然可见。如果一个变量在其预期使用区域之前或之后意外使用,其后果可能是灾难性的。
**Nearly every local variable declaration should contain an initializer.** If you don’t yet have enough information to initialize a variable sensibly, you should postpone the declaration until you do. One exception to this rule concerns try-catch statements. If a variable is initialized to an expression whose evaluation can throw a checked exception, the variable must be initialized inside a try block (unless the enclosing method can propagate the exception). If the value must be used outside of the try block, then it must be declared before the try block, where it cannot yet be “sensibly initialized.” For an example, see page 283.
**每个局部变量声明都应该包含一个初始化表达式。** 如果你还没有足够的信息来合理地初始化一个变量,你应该推迟声明,直到条件满足。这个规则的一个例外是 try-catch 语句。如果一个变量被初始化为一个表达式,该表达式的计算结果可以抛出一个 checked 异常,那么该变量必须在 try 块中初始化(除非所包含的方法可以传播异常)。如果该值必须在 try 块之外使用,那么它必须在 try 块之前声明,此时它还不能「合理地初始化」。例子可参见 283 页。
Loops present a special opportunity to minimize the scope of variables. The for loop, in both its traditional and for-each forms, allows you to declare loop variables, limiting their scope to the exact region where they’re needed. (This region consists of the body of the loop and the code in parentheses between the for keyword and the body.) Therefore, prefer for loops to while loops, assuming the contents of the loop variable aren’t needed after the loop terminates.
循环提供了一个特殊的机会来最小化变量的范围。for 循环的传统形式和 for-each 形式都允许声明循环变量,将它们的作用域精确限制在需要它们的区域。(这个区域由循环的主体以及 for 关键字和主体之间括号中的代码组成。)因此,假设循环结束后不再需要循环变量,for 循环就优于 while 循环。
For example, here is the preferred idiom for iterating over a collection (Item 58):
例如,下面是遍历集合的首选习惯用法([Item-58](/Chapter-9/Chapter-9-Item-58-Prefer-for-each-loops-to-traditional-for-loops.md)):
```
// Preferred idiom for iterating over a collection or array
for (Element e : c) {
... // Do Something with e
}
```
If you need access to the iterator, perhaps to call its remove method, the preferred idiom uses a traditional for loop in place of the for-each loop:
如果你需要访问 iterator,或者调用它的 remove 方法,首选的习惯用法是使用传统的 for 循环来代替 for-each 循环:
```
// Idiom for iterating when you need the iterator
for (Iterator<Element> i = c.iterator(); i.hasNext(); ) {
Element e = i.next();
... // Do something with e and i
}
```
To see why these for loops are preferable to a while loop, consider the following code fragment, which contains two while loops and one bug:
要弄清楚为什么 for 循环比 while 循环更好,请考虑下面的代码片段,其中包含两个 while 循环和一个 bug:
```
Iterator<Element> i = c.iterator();
while (i.hasNext()) {
doSomething(i.next());
}
...
Iterator<Element> i2 = c2.iterator();
while (i.hasNext()) { // BUG!
doSomethingElse(i2.next());
}
```
The second loop contains a copy-and-paste error: it initializes a new loop variable, i2, but uses the old one, i, which is, unfortunately, still in scope. The resulting code compiles without error and runs without throwing an exception, but it does the wrong thing. Instead of iterating over c2, the second loop terminates immediately, giving the false impression that c2 is empty. Because the program errs silently, the error can remain undetected for a long time.
第二个循环包含一个复制粘贴错误:它计划初始化一个新的循环变量 i2,却误用了旧的变量 i,不幸的是,i 仍然在作用域中。生成的代码编译时没有错误,运行时没有抛出异常,但是它做了错误的事情。第二个循环并没有遍历 c2,而是立即终止,从而产生 c2 为空的假象。因为程序会静默地出错,所以很长一段时间内都无法检测到错误。
If a similar copy-and-paste error were made in conjunction with either of the for loops (for-each or traditional), the resulting code wouldn’t even compile. The element (or iterator) variable from the first loop would not be in scope in the second loop. Here’s how it looks with the traditional for loop:
如果将类似的复制粘贴错误发生在 for 循环(for-each 循环或传统循环),则生成的代码甚至无法编译。对于第二个循环,第一个循环中的(或 iterator)变量已经不在作用域中。下面是它与传统 for 循环的样子:
```
for (Iterator<Element> i = c.iterator(); i.hasNext(); ) {
Element e = i.next();
... // Do something with e and i
}
...
// Compile-time error - cannot find symbol i
for (Iterator<Element> i2 = c2.iterator(); i.hasNext(); ) {
Element e2 = i2.next();
... // Do something with e2 and i2
}
```
Moreover, if you use a for loop, it’s much less likely that you’ll make the copy-and-paste error because there’s no incentive to use different variable names in the two loops. The loops are completely independent, so there’s no harm in reusing the element (or iterator) variable name. In fact, it’s often stylish to do so. The for loop has one more advantage over the while loop: it is shorter, which enhances readability. Here is another loop idiom that minimizes the scope of local variables:
此外,如果你使用 for 循环,那么发生复制粘贴错误的可能性要小得多,因为这两种循环中没有使用不同变量名称的动机。循环是完全独立的,所以复用循环(或 iterator)变量名没有害处。事实上,这样做通常很流行。for 循环相比 while 循环还有一个优点:它更短,这增强了可读性。下面是另一个循环习惯用法,它也最小化了局部变量的范围:
```
for (int i = 0, n = expensiveComputation(); i < n; i++) {
... // Do something with i;
}
```
The important thing to notice about this idiom is that it has two loop variables, i and n, both of which have exactly the right scope. The second variable, n, is used to store the limit of the first, thus avoiding the cost of a redundant computation in every iteration. As a rule, you should use this idiom if the loop test involves a method invocation that is guaranteed to return the same result on each iteration.
关于这个用法需要注意的重要一点是,它有两个循环变量,i 和 n,它们都具有完全正确的作用域。第二个变量 n 用于存储第一个变量的极限,从而避免了每次迭代中冗余计算的成本。作为一个规则,如果循环测试涉及一个方法调用,并且保证在每次迭代中返回相同的结果,那么应该使用这个习惯用法。
A final technique to minimize the scope of local variables is to keep methods small and focused. If you combine two activities in the same method, local variables relevant to one activity may be in the scope of the code performing the other activity. To prevent this from happening, simply separate the method into two: one for each activity.
最小化局部变量范围的最后一种技术是保持方法小而集中。如果在同一方法中合并两个操作,与一个操作相关的局部变量可能位于执行另一个操作的代码的范围内。为了防止这种情况发生,只需将方法分成两个部分:每个操作一个。
---
**[Back to contents of the chapter(返回章节目录)](/Chapter-9/Chapter-9-Introduction.md)**
- **Next Item(下一条目):[Item 58: Prefer for-each loops to traditional for loops(for-each 循环优于传统的 for 循环)](/Chapter-9/Chapter-9-Item-58-Prefer-for-each-loops-to-traditional-for-loops.md)**
- Chapter 2. Creating and Destroying Objects(创建和销毁对象)
- Item 1: Consider static factory methods instead of constructors(考虑以静态工厂方法代替构造函数)
- Item 2: Consider a builder when faced with many constructor parameters(在面对多个构造函数参数时,请考虑构建器)
- Item 3: Enforce the singleton property with a private constructor or an enum type(使用私有构造函数或枚举类型实施单例属性)
- Item 4: Enforce noninstantiability with a private constructor(用私有构造函数实施不可实例化)
- Item 5: Prefer dependency injection to hardwiring resources(依赖注入优于硬连接资源)
- Item 6: Avoid creating unnecessary objects(避免创建不必要的对象)
- Item 7: Eliminate obsolete object references(排除过时的对象引用)
- Item 8: Avoid finalizers and cleaners(避免使用终结器和清除器)
- Item 9: Prefer try with resources to try finally(使用 try-with-resources 优于 try-finally)
- Chapter 3. Methods Common to All Objects(对象的通用方法)
- Item 10: Obey the general contract when overriding equals(覆盖 equals 方法时应遵守的约定)
- Item 11: Always override hashCode when you override equals(当覆盖 equals 方法时,总要覆盖 hashCode 方法)
- Item 12: Always override toString(始终覆盖 toString 方法)
- Item 13: Override clone judiciously(明智地覆盖 clone 方法)
- Item 14: Consider implementing Comparable(考虑实现 Comparable 接口)
- Chapter 4. Classes and Interfaces(类和接口)
- Item 15: Minimize the accessibility of classes and members(尽量减少类和成员的可访问性)
- Item 16: In public classes use accessor methods not public fields(在公共类中,使用访问器方法,而不是公共字段)
- Item 17: Minimize mutability(减少可变性)
- Item 18: Favor composition over inheritance(优先选择复合而不是继承)
- Item 19: Design and document for inheritance or else prohibit it(继承要设计良好并且具有文档,否则禁止使用)
- Item 20: Prefer interfaces to abstract classes(接口优于抽象类)
- Item 21: Design interfaces for posterity(为后代设计接口)
- Item 22: Use interfaces only to define types(接口只用于定义类型)
- Item 23: Prefer class hierarchies to tagged classes(类层次结构优于带标签的类)
- Item 24: Favor static member classes over nonstatic(静态成员类优于非静态成员类)
- Item 25: Limit source files to a single top level class(源文件仅限有单个顶层类)
- Chapter 5. Generics(泛型)
- Item 26: Do not use raw types(不要使用原始类型)
- Item 27: Eliminate unchecked warnings(消除 unchecked 警告)
- Item 28: Prefer lists to arrays(list 优于数组)
- Item 29: Favor generic types(优先使用泛型)
- Item 30: Favor generic methods(优先使用泛型方法)
- Item 31: Use bounded wildcards to increase API flexibility(使用有界通配符增加 API 的灵活性)
- Item 32: Combine generics and varargs judiciously(明智地合用泛型和可变参数)
- Item 33: Consider typesafe heterogeneous containers(考虑类型安全的异构容器)
- Chapter 6. Enums and Annotations(枚举和注解)
- Item 34: Use enums instead of int constants(用枚举类型代替 int 常量)
- Item 35: Use instance fields instead of ordinals(使用实例字段替代序数)
- Item 36: Use EnumSet instead of bit fields(用 EnumSet 替代位字段)
- Item 37: Use EnumMap instead of ordinal indexing(使用 EnumMap 替换序数索引)
- Item 38: Emulate extensible enums with interfaces(使用接口模拟可扩展枚举)
- Item 39: Prefer annotations to naming patterns(注解优于命名模式)
- Item 40: Consistently use the Override annotation(坚持使用 @Override 注解)
- Item 41: Use marker interfaces to define types(使用标记接口定义类型)
- Chapter 7. Lambdas and Streams(λ 表达式和流)
- Item 42: Prefer lambdas to anonymous classes(λ 表达式优于匿名类)
- Item 43: Prefer method references to lambdas(方法引用优于 λ 表达式)
- Item 44: Favor the use of standard functional interfaces(优先使用标准函数式接口)
- Item 45: Use streams judiciously(明智地使用流)
- Item 46: Prefer side effect free functions in streams(在流中使用无副作用的函数)
- Item 47: Prefer Collection to Stream as a return type(优先选择 Collection 而不是流作为返回类型)
- Item 48: Use caution when making streams parallel(谨慎使用并行流)
- Chapter 8. Methods(方法)
- Item 49: Check parameters for validity(检查参数的有效性)
- Item 50: Make defensive copies when needed(在需要时制作防御性副本)
- Item 51: Design method signatures carefully(仔细设计方法签名)
- Item 52: Use overloading judiciously(明智地使用重载)
- Item 53: Use varargs judiciously(明智地使用可变参数)
- Item 54: Return empty collections or arrays, not nulls(返回空集合或数组,而不是 null)
- Item 55: Return optionals judiciously(明智地的返回 Optional)
- Item 56: Write doc comments for all exposed API elements(为所有公开的 API 元素编写文档注释)
- Chapter 9. General Programming(通用程序设计)
- Item 57: Minimize the scope of local variables(将局部变量的作用域最小化)
- Item 58: Prefer for-each loops to traditional for loops(for-each 循环优于传统的 for 循环)
- Item 59: Know and use the libraries(了解并使用库)
- Item 60: Avoid float and double if exact answers are required(若需要精确答案就应避免使用 float 和 double 类型)
- Item 61: Prefer primitive types to boxed primitives(基本数据类型优于包装类)
- Item 62: Avoid strings where other types are more appropriate(其他类型更合适时应避免使用字符串)
- Item 63: Beware the performance of string concatenation(当心字符串连接引起的性能问题)
- Item 64: Refer to objects by their interfaces(通过接口引用对象)
- Item 65: Prefer interfaces to reflection(接口优于反射)
- Item 66: Use native methods judiciously(明智地使用本地方法)
- Item 67: Optimize judiciously(明智地进行优化)
- Item 68: Adhere to generally accepted naming conventions(遵守被广泛认可的命名约定)
- Chapter 10. Exceptions(异常)
- Item 69: Use exceptions only for exceptional conditions(仅在确有异常条件下使用异常)
- Item 70: Use checked exceptions for recoverable conditions and runtime exceptions for programming errors(对可恢复情况使用 checked 异常,对编程错误使用运行时异常)
- Item 71: Avoid unnecessary use of checked exceptions(避免不必要地使用 checked 异常)
- Item 72: Favor the use of standard exceptions(鼓励复用标准异常)
- Item 73: Throw exceptions appropriate to the abstraction(抛出能用抽象解释的异常)
- Item 74: Document all exceptions thrown by each method(为每个方法记录会抛出的所有异常)
- Item 75: Include failure capture information in detail messages(异常详细消息中应包含捕获失败的信息)
- Item 76: Strive for failure atomicity(尽力保证故障原子性)
- Item 77: Don’t ignore exceptions(不要忽略异常)
- Chapter 11. Concurrency(并发)
- Item 78: Synchronize access to shared mutable data(对共享可变数据的同步访问)
- Item 79: Avoid excessive synchronization(避免过度同步)
- Item 80: Prefer executors, tasks, and streams to threads(Executor、task、流优于直接使用线程)
- Item 81: Prefer concurrency utilities to wait and notify(并发实用工具优于 wait 和 notify)
- Item 82: Document thread safety(文档应包含线程安全属性)
- Item 83: Use lazy initialization judiciously(明智地使用延迟初始化)
- Item 84: Don’t depend on the thread scheduler(不要依赖线程调度器)
- Chapter 12. Serialization(序列化)
- Item 85: Prefer alternatives to Java serialization(优先选择 Java 序列化的替代方案)
- Item 86: Implement Serializable with great caution(非常谨慎地实现 Serializable)
- Item 87: Consider using a custom serialized form(考虑使用自定义序列化形式)
- Item 88: Write readObject methods defensively(防御性地编写 readObject 方法)
- Item 89: For instance control, prefer enum types to readResolve(对于实例控制,枚举类型优于 readResolve)
- Item 90: Consider serialization proxies instead of serialized instances(考虑以序列化代理代替序列化实例)