## Chapter 11. Concurrency(并发)
### Item 80: Prefer executors, tasks, and streams to threads(Executor、task、流优于直接使用线程)
The first edition of this book contained code for a simple work queue [Bloch01, Item 49]. This class allowed clients to enqueue work for asynchronous processing by a background thread. When the work queue was no longer needed, the client could invoke a method to ask the background thread to terminate itself gracefully after completing any work that was already on the queue. The implementation was little more than a toy, but even so, it required a full page of subtle, delicate code, of the sort that is prone to safety and liveness failures if you don’t get it just right. Luckily, there is no reason to write this sort of code anymore.
本书的第一版包含一个简单工作队列的代码 [Bloch01, Item 49]。这个类允许客户端通过后台线程为异步处理排队。当不再需要工作队列时,客户端可以调用一个方法,要求后台线程在完成队列上的任何工作后优雅地终止自己。这个实现只不过是一个玩具,但即便如此,它也需要一整页的代码,如果你做得不对,就很容易出现安全和活性失败。幸运的是,没有理由再编写这种代码了。
By the time the second edition of this book came out, java.util.concurrent had been added to Java. This package contains an Executor Framework, which is a flexible interface-based task execution facility. Creating a work queue that is better in every way than the one in the first edition of this book requires but a single line of code:
当这本书的第二版出版时,`java.util.concurrent` 已经添加到 Java 中。这个包有一个 Executor 框架,它是一个灵活的基于接口的任务执行工具。创建一个工作队列,它在任何方面都比在这本书的第一版更好,只需要一行代码:
```
ExecutorService exec = Executors.newSingleThreadExecutor();
Here is how to submit a runnable for execution:
exec.execute(runnable);
And here is how to tell the executor to terminate gracefully (if you fail to do this,it is likely that your VM will not exit):
exec.shutdown();
```
You can do many more things with an executor service. For example, you can wait for a particular task to complete (with the get method, as shown in Item 79, page 319), you can wait for any or all of a collection of tasks to complete (using the invokeAny or invokeAll methods), you can wait for the executor service to terminate (using the awaitTermination method), you can retrieve the results of tasks one by one as they complete (using an ExecutorCompletionService), you can schedule tasks to run at a particular time or to run periodically (using a ScheduledThreadPoolExecutor), and so on.
你可以使用 executor 服务做更多的事情。例如,你可以等待一个特定任务完成(使用 get 方法,参见 [Item-79](/Chapter-11/Chapter-11-Item-79-Avoid-excessive-synchronization.md),319 页),你可以等待任务集合中任何或全部任务完成(使用 invokeAny 或 invokeAll 方法),你可以等待 executor 服务终止(使用 awaitTermination 方法),你可以一个接一个检索任务,获取他们完成的结果(使用一个 ExecutorCompletionService),还可以安排任务在特定时间运行或定期运行(使用 ScheduledThreadPoolExecutor),等等。
If you want more than one thread to process requests from the queue, simply call a different static factory that creates a different kind of executor service called a thread pool. You can create a thread pool with a fixed or variable number of threads. The java.util.concurrent.Executors class contains static factories that provide most of the executors you’ll ever need. If, however, you want something out of the ordinary, you can use the ThreadPoolExecutor class directly. This class lets you configure nearly every aspect of a thread pool’s operation.
如果希望多个线程处理来自队列的请求,只需调用一个不同的静态工厂,该工厂创建一种称为线程池的不同类型的 executor 服务。你可以使用固定或可变数量的线程创建线程池。`java.util.concurrent.Executors` 类包含静态工厂,它们提供你需要的大多数 executor。但是,如果你想要一些不同寻常的东西,你可以直接使用 ThreadPoolExecutor 类。这个类允许你配置线程池操作的几乎每个方面。
Choosing the executor service for a particular application can be tricky. For a small program, or a lightly loaded server, Executors.newCachedThreadPool is generally a good choice because it demands no configuration and generally “does the right thing.” But a cached thread pool is not a good choice for a heavily loaded production server! In a cached thread pool, submitted tasks are not queued but immediately handed off to a thread for execution. If no threads are available, a new one is created. If a server is so heavily loaded that all of its CPUs are fully utilized and more tasks arrive, more threads will be created, which will only make matters worse. Therefore, in a heavily loaded production server, you are much better off using Executors.newFixedThreadPool, which gives you a pool with a fixed number of threads, or using the ThreadPoolExecutor class directly, for maximum control.
为特定的应用程序选择 executor 服务可能比较棘手。对于小程序或负载较轻的服务器,`Executors.newCachedThreadPool` 通常是一个不错的选择,因为它不需要配置,而且通常「做正确的事情」。但是对于负载沉重的生产服务器来说,缓存的线程池不是一个好的选择!在缓存的线程池中,提交的任务不会排队,而是立即传递给线程执行。如果没有可用的线程,则创建一个新的线程。如果服务器负载过重,所有 CPU 都被充分利用,并且有更多的任务到达,就会创建更多的线程,这只会使情况变得更糟。因此,在负载沉重的生产服务器中,最好使用 `Executors.newFixedThreadPool`,它为你提供一个线程数量固定的池,或者直接使用 ThreadPoolExecutor 类来实现最大限度的控制。
Not only should you refrain from writing your own work queues, but you should generally refrain from working directly with threads. When you work directly with threads, a Thread serves as both a unit of work and the mechanism for executing it. In the executor framework, the unit of work and the execution mechanism are separate. The key abstraction is the unit of work, which is the task. There are two kinds of tasks: Runnable and its close cousin, Callable (which is like Runnable, except that it returns a value and can throw arbitrary exceptions). The general mechanism for executing tasks is the executor service. If you think in terms of tasks and let an executor service execute them for you, you gain the flexibility to select an appropriate execution policy to meet your needs and to change the policy if your needs change. In essence, the Executor Framework does for execution what the Collections Framework did for aggregation.
你不仅应该避免编写自己的工作队列,而且通常还应该避免直接使用线程。当你直接使用线程时,线程既是工作单元,又是执行它的机制。在 executor 框架中,工作单元和执行机制是分开的。关键的抽象是工作单元,即任务。有两种任务:Runnable 和它的近亲 Callable(与 Runnable 类似,只是它返回一个值并可以抛出任意异常)。执行任务的一般机制是 executor 服务。如果你从任务的角度考虑问题,并让 executor 服务为你执行这些任务,那么你就可以灵活地选择合适的执行策略来满足你的需求,并在你的需求发生变化时更改策略。本质上,Executor 框架执行的功能与 Collections 框架聚合的功能相同。
In Java 7, the Executor Framework was extended to support fork-join tasks, which are run by a special kind of executor service known as a fork-join pool. A fork-join task, represented by a ForkJoinTask instance, may be split up into smaller subtasks, and the threads comprising a ForkJoinPool not only process these tasks but “steal” tasks from one another to ensure that all threads remain busy, resulting in higher CPU utilization, higher throughput, and lower latency. Writing and tuning fork-join tasks is tricky. Parallel streams (Item 48) are written atop fork join pools and allow you to take advantage of their performance benefits with little effort, assuming they are appropriate for the task at hand.
在 Java 7 中,Executor 框架被扩展为支持 fork-join 任务,这些任务由一种特殊的 Executor 服务(称为 fork-join 池)运行。由 ForkJoinTask 实例表示的 fork-join 任务可以划分为更小的子任务,由 ForkJoinPool 组成的线程不仅处理这些任务,而且还从其他线程「窃取」任务,以确保所有线程都处于繁忙状态,从而提高 CPU 利用率、更高的吞吐量和更低的延迟。编写和调优 fork-join 任务非常棘手。并行流([Item-48](/Chapter-7/Chapter-7-Item-48-Use-caution-when-making-streams-parallel.md))
是在 fork 连接池之上编写的,假设它们适合当前的任务,那么你可以轻松地利用它们的性能优势。
A complete treatment of the Executor Framework is beyond the scope of this book, but the interested reader is directed to Java Concurrency in Practice [Goetz06].
对 Executor 框架的完整处理超出了本书的范围,但是感兴趣的读者可以在实践中可以参阅《Java Concurrency in Practice》 [Goetz06]。
---
**[Back to contents of the chapter(返回章节目录)](/Chapter-11/Chapter-11-Introduction.md)**
- **Previous Item(上一条目):[Item 79: Avoid excessive synchronization(避免过度同步)](/Chapter-11/Chapter-11-Item-79-Avoid-excessive-synchronization.md)**
- **Next Item(下一条目):[Item 81: Prefer concurrency utilities to wait and notify(并发实用工具优于 wait 和 notify)](/Chapter-11/Chapter-11-Item-81-Prefer-concurrency-utilities-to-wait-and-notify.md)**
- Chapter 2. Creating and Destroying Objects(创建和销毁对象)
- Item 1: Consider static factory methods instead of constructors(考虑以静态工厂方法代替构造函数)
- Item 2: Consider a builder when faced with many constructor parameters(在面对多个构造函数参数时,请考虑构建器)
- Item 3: Enforce the singleton property with a private constructor or an enum type(使用私有构造函数或枚举类型实施单例属性)
- Item 4: Enforce noninstantiability with a private constructor(用私有构造函数实施不可实例化)
- Item 5: Prefer dependency injection to hardwiring resources(依赖注入优于硬连接资源)
- Item 6: Avoid creating unnecessary objects(避免创建不必要的对象)
- Item 7: Eliminate obsolete object references(排除过时的对象引用)
- Item 8: Avoid finalizers and cleaners(避免使用终结器和清除器)
- Item 9: Prefer try with resources to try finally(使用 try-with-resources 优于 try-finally)
- Chapter 3. Methods Common to All Objects(对象的通用方法)
- Item 10: Obey the general contract when overriding equals(覆盖 equals 方法时应遵守的约定)
- Item 11: Always override hashCode when you override equals(当覆盖 equals 方法时,总要覆盖 hashCode 方法)
- Item 12: Always override toString(始终覆盖 toString 方法)
- Item 13: Override clone judiciously(明智地覆盖 clone 方法)
- Item 14: Consider implementing Comparable(考虑实现 Comparable 接口)
- Chapter 4. Classes and Interfaces(类和接口)
- Item 15: Minimize the accessibility of classes and members(尽量减少类和成员的可访问性)
- Item 16: In public classes use accessor methods not public fields(在公共类中,使用访问器方法,而不是公共字段)
- Item 17: Minimize mutability(减少可变性)
- Item 18: Favor composition over inheritance(优先选择复合而不是继承)
- Item 19: Design and document for inheritance or else prohibit it(继承要设计良好并且具有文档,否则禁止使用)
- Item 20: Prefer interfaces to abstract classes(接口优于抽象类)
- Item 21: Design interfaces for posterity(为后代设计接口)
- Item 22: Use interfaces only to define types(接口只用于定义类型)
- Item 23: Prefer class hierarchies to tagged classes(类层次结构优于带标签的类)
- Item 24: Favor static member classes over nonstatic(静态成员类优于非静态成员类)
- Item 25: Limit source files to a single top level class(源文件仅限有单个顶层类)
- Chapter 5. Generics(泛型)
- Item 26: Do not use raw types(不要使用原始类型)
- Item 27: Eliminate unchecked warnings(消除 unchecked 警告)
- Item 28: Prefer lists to arrays(list 优于数组)
- Item 29: Favor generic types(优先使用泛型)
- Item 30: Favor generic methods(优先使用泛型方法)
- Item 31: Use bounded wildcards to increase API flexibility(使用有界通配符增加 API 的灵活性)
- Item 32: Combine generics and varargs judiciously(明智地合用泛型和可变参数)
- Item 33: Consider typesafe heterogeneous containers(考虑类型安全的异构容器)
- Chapter 6. Enums and Annotations(枚举和注解)
- Item 34: Use enums instead of int constants(用枚举类型代替 int 常量)
- Item 35: Use instance fields instead of ordinals(使用实例字段替代序数)
- Item 36: Use EnumSet instead of bit fields(用 EnumSet 替代位字段)
- Item 37: Use EnumMap instead of ordinal indexing(使用 EnumMap 替换序数索引)
- Item 38: Emulate extensible enums with interfaces(使用接口模拟可扩展枚举)
- Item 39: Prefer annotations to naming patterns(注解优于命名模式)
- Item 40: Consistently use the Override annotation(坚持使用 @Override 注解)
- Item 41: Use marker interfaces to define types(使用标记接口定义类型)
- Chapter 7. Lambdas and Streams(λ 表达式和流)
- Item 42: Prefer lambdas to anonymous classes(λ 表达式优于匿名类)
- Item 43: Prefer method references to lambdas(方法引用优于 λ 表达式)
- Item 44: Favor the use of standard functional interfaces(优先使用标准函数式接口)
- Item 45: Use streams judiciously(明智地使用流)
- Item 46: Prefer side effect free functions in streams(在流中使用无副作用的函数)
- Item 47: Prefer Collection to Stream as a return type(优先选择 Collection 而不是流作为返回类型)
- Item 48: Use caution when making streams parallel(谨慎使用并行流)
- Chapter 8. Methods(方法)
- Item 49: Check parameters for validity(检查参数的有效性)
- Item 50: Make defensive copies when needed(在需要时制作防御性副本)
- Item 51: Design method signatures carefully(仔细设计方法签名)
- Item 52: Use overloading judiciously(明智地使用重载)
- Item 53: Use varargs judiciously(明智地使用可变参数)
- Item 54: Return empty collections or arrays, not nulls(返回空集合或数组,而不是 null)
- Item 55: Return optionals judiciously(明智地的返回 Optional)
- Item 56: Write doc comments for all exposed API elements(为所有公开的 API 元素编写文档注释)
- Chapter 9. General Programming(通用程序设计)
- Item 57: Minimize the scope of local variables(将局部变量的作用域最小化)
- Item 58: Prefer for-each loops to traditional for loops(for-each 循环优于传统的 for 循环)
- Item 59: Know and use the libraries(了解并使用库)
- Item 60: Avoid float and double if exact answers are required(若需要精确答案就应避免使用 float 和 double 类型)
- Item 61: Prefer primitive types to boxed primitives(基本数据类型优于包装类)
- Item 62: Avoid strings where other types are more appropriate(其他类型更合适时应避免使用字符串)
- Item 63: Beware the performance of string concatenation(当心字符串连接引起的性能问题)
- Item 64: Refer to objects by their interfaces(通过接口引用对象)
- Item 65: Prefer interfaces to reflection(接口优于反射)
- Item 66: Use native methods judiciously(明智地使用本地方法)
- Item 67: Optimize judiciously(明智地进行优化)
- Item 68: Adhere to generally accepted naming conventions(遵守被广泛认可的命名约定)
- Chapter 10. Exceptions(异常)
- Item 69: Use exceptions only for exceptional conditions(仅在确有异常条件下使用异常)
- Item 70: Use checked exceptions for recoverable conditions and runtime exceptions for programming errors(对可恢复情况使用 checked 异常,对编程错误使用运行时异常)
- Item 71: Avoid unnecessary use of checked exceptions(避免不必要地使用 checked 异常)
- Item 72: Favor the use of standard exceptions(鼓励复用标准异常)
- Item 73: Throw exceptions appropriate to the abstraction(抛出能用抽象解释的异常)
- Item 74: Document all exceptions thrown by each method(为每个方法记录会抛出的所有异常)
- Item 75: Include failure capture information in detail messages(异常详细消息中应包含捕获失败的信息)
- Item 76: Strive for failure atomicity(尽力保证故障原子性)
- Item 77: Don’t ignore exceptions(不要忽略异常)
- Chapter 11. Concurrency(并发)
- Item 78: Synchronize access to shared mutable data(对共享可变数据的同步访问)
- Item 79: Avoid excessive synchronization(避免过度同步)
- Item 80: Prefer executors, tasks, and streams to threads(Executor、task、流优于直接使用线程)
- Item 81: Prefer concurrency utilities to wait and notify(并发实用工具优于 wait 和 notify)
- Item 82: Document thread safety(文档应包含线程安全属性)
- Item 83: Use lazy initialization judiciously(明智地使用延迟初始化)
- Item 84: Don’t depend on the thread scheduler(不要依赖线程调度器)
- Chapter 12. Serialization(序列化)
- Item 85: Prefer alternatives to Java serialization(优先选择 Java 序列化的替代方案)
- Item 86: Implement Serializable with great caution(非常谨慎地实现 Serializable)
- Item 87: Consider using a custom serialized form(考虑使用自定义序列化形式)
- Item 88: Write readObject methods defensively(防御性地编写 readObject 方法)
- Item 89: For instance control, prefer enum types to readResolve(对于实例控制,枚举类型优于 readResolve)
- Item 90: Consider serialization proxies instead of serialized instances(考虑以序列化代理代替序列化实例)