[TOC]
### 手写 instanceof 方法
instanceof 运算符用于判断构造函数的 prototype 属性是否出现在对象的原型链中的任何位置。
实现步骤:
1. 首先获取类型的原型
2. 然后获得对象的原型
3. 然后一直循环判断对象的原型是否等于类型的原型,直到对象原型为 `null`,因为原型链最终为 `null`
具体实现:
```
function myInstanceof(left, right) {
let proto = Object.getPrototypeOf(left), // 获取对象的原型
prototype = right.prototype; // 获取构造函数的 prototype 对象
// 判断构造函数的 prototype 对象是否在对象的原型链上
while (true) {
if (!proto) return false;
if (proto === prototype) return true;
proto = Object.getPrototypeOf(proto);
}
}
```
### 手写 new 操作符
在调用 `new` 的过程中会发生以上四件事情:
1. 首先创建了一个新的空对象
2. 设置原型,将对象的原型设置为函数的 prototype 对象。
3. 让函数的 this 指向这个对象,执行构造函数的代码(为这个新对象添加属性)
4. 判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类型的对象。
```
function objectFactory() {
let newObject = null;
let constructor = Array.prototype.shift.call(arguments);
let result = null;
// 判断参数是否是一个函数
if (typeof constructor !== "function") {
console.error("type error");
return;
}
// 新建一个空对象,对象的原型为构造函数的 prototype 对象
newObject = Object.create(constructor.prototype);
// 将 this 指向新建对象,并执行函数
result = constructor.apply(newObject, arguments);
// 判断返回对象
let flag = result && (typeof result === "object" || typeof result === "function");
// 判断返回结果
return flag ? result : newObject;
}
// 使用方法
objectFactory(构造函数, 初始化参数);
```
### 手写Promise
```
const PENDING = "pending";
const RESOLVED = "resolved";
const REJECTED = "rejected";
function MyPromise(fn) {
// 保存初始化状态
var self = this;
// 初始化状态
this.state = PENDING;
// 用于保存 resolve 或者 rejected 传入的值
this.value = null;
// 用于保存 resolve 的回调函数
this.resolvedCallbacks = [];
// 用于保存 reject 的回调函数
this.rejectedCallbacks = [];
// 状态转变为 resolved 方法
function resolve(value) {
// 判断传入元素是否为 Promise 值,如果是,则状态改变必须等待前一个状态改变后再进行改变
if (value instanceof MyPromise) {
return value.then(resolve, reject);
}
// 保证代码的执行顺序为本轮事件循环的末尾
setTimeout(() => {
// 只有状态为 pending 时才能转变,
if (self.state === PENDING) {
// 修改状态
self.state = RESOLVED;
// 设置传入的值
self.value = value;
// 执行回调函数
self.resolvedCallbacks.forEach(callback => {
callback(value);
});
}
}, 0);
}
// 状态转变为 rejected 方法
function reject(value) {
// 保证代码的执行顺序为本轮事件循环的末尾
setTimeout(() => {
// 只有状态为 pending 时才能转变
if (self.state === PENDING) {
// 修改状态
self.state = REJECTED;
// 设置传入的值
self.value = value;
// 执行回调函数
self.rejectedCallbacks.forEach(callback => {
callback(value);
});
}
}, 0);
}
// 将两个方法传入函数执行
try {
fn(resolve, reject);
} catch (e) {
// 遇到错误时,捕获错误,执行 reject 函数
reject(e);
}
}
MyPromise.prototype.then = function(onResolved, onRejected) {
// 首先判断两个参数是否为函数类型,因为这两个参数是可选参数
onResolved =
typeof onResolved === "function"
? onResolved
: function(value) {
return value;
};
onRejected =
typeof onRejected === "function"
? onRejected
: function(error) {
throw error;
};
// 如果是等待状态,则将函数加入对应列表中
if (this.state === PENDING) {
this.resolvedCallbacks.push(onResolved);
this.rejectedCallbacks.push(onRejected);
}
// 如果状态已经凝固,则直接执行对应状态的函数
if (this.state === RESOLVED) {
onResolved(this.value);
}
if (this.state === REJECTED) {
onRejected(this.value);
}
};
```
### 手写 Promise.then
`then` 方法返回一个新的 `promise` 实例,为了在 `promise` 状态发生变化时(`resolve` / `reject` 被调用时)再执行 `then` 里的函数,我们使用一个 `callbacks` 数组先把传给then的函数暂存起来,等状态改变时再调用。
**那么,怎么保证后一个** `**then**` **里的方法在前一个** `**then**`**(可能是异步)结束之后再执行呢?**
我们可以将传给 `then` 的函数和新 `promise` 的 `resolve` 一起 `push` 到前一个 `promise` 的 `callbacks` 数组中,达到承前启后的效果:
* 承前:当前一个 `promise` 完成后,调用其 `resolve` 变更状态,在这个 `resolve` 里会依次调用 `callbacks` 里的回调,这样就执行了 `then` 里的方法了
* 启后:上一步中,当 `then` 里的方法执行完成后,返回一个结果,如果这个结果是个简单的值,就直接调用新 `promise` 的 `resolve`,让其状态变更,这又会依次调用新 `promise` 的 `callbacks` 数组里的方法,循环往复。。如果返回的结果是个 `promise`,则需要等它完成之后再触发新 `promise` 的 `resolve`,所以可以在其结果的 `then` 里调用新 `promise` 的 `resolve`。
```
then(onFulfilled, onReject){
// 保存前一个promise的this
const self = this;
return new MyPromise((resolve, reject) => {
// 封装前一个promise成功时执行的函数
let fulfilled = () => {
try{
const result = onFulfilled(self.value); // 承前
return result instanceof MyPromise? result.then(resolve, reject) : resolve(result); //启后
}catch(err){
reject(err)
}
}
// 封装前一个promise失败时执行的函数
let rejected = () => {
try{
const result = onReject(self.reason);
return result instanceof MyPromise? result.then(resolve, reject) : reject(result);
}catch(err){
reject(err)
}
}
switch(self.status){
case PENDING:
self.onFulfilledCallbacks.push(fulfilled);
self.onRejectedCallbacks.push(rejected);
break;
case FULFILLED:
fulfilled();
break;
case REJECT:
rejected();
break;
}
})
}
```
**注意:**
* 连续多个 `then` 里的回调方法是同步注册的,但注册到了不同的 `callbacks` 数组中,因为每次 `then` 都返回新的 `promise` 实例(参考上面的例子和图)
* 注册完成后开始执行构造函数中的异步事件,异步完成之后依次调用 `callbacks` 数组中提前注册的回调
### 手写 Promise.all
**核心思路**
1. 接收一个 Promise 实例的数组或具有 Iterator 接口的对象作为参数
2. 这个方法返回一个新的 promise 对象,
3. 遍历传入的参数,用Promise.resolve()将参数"包一层",使其变成一个promise对象
4. 参数所有回调成功才是成功,返回值数组与参数顺序一致
5. 参数数组其中一个失败,则触发失败状态,第一个触发失败的 Promise 错误信息作为 Promise.all 的错误信息。
**实现代码**
一般来说,Promise.all 用来处理多个并发请求,也是为了页面数据构造的方便,将一个页面所用到的在不同接口的数据一起请求过来,不过,如果其中一个接口失败了,多个请求也就失败了,页面可能啥也出不来,这就看当前页面的耦合程度了。
```
function promiseAll(promises) {
return new Promise(function(resolve, reject) {
if(!Array.isArray(promises)){
throw new TypeError(`argument must be a array`)
}
var resolvedCounter = 0;
var promiseNum = promises.length;
var resolvedResult = [];
for (let i = 0; i < promiseNum; i++) {
Promise.resolve(promises[i]).then(value=>{
resolvedCounter++;
resolvedResult[i] = value;
if (resolvedCounter == promiseNum) {
return resolve(resolvedResult)
}
},error=>{
return reject(error)
})
}
})
}
// test
let p1 = new Promise(function (resolve, reject) {
setTimeout(function () {
resolve(1)
}, 1000)
})
let p2 = new Promise(function (resolve, reject) {
setTimeout(function () {
resolve(2)
}, 2000)
})
let p3 = new Promise(function (resolve, reject) {
setTimeout(function () {
resolve(3)
}, 3000)
})
promiseAll([p3, p1, p2]).then(res => {
console.log(res) // [3, 1, 2]
})
```
### 手写 Promise.race
该方法的参数是 Promise 实例数组, 然后其 then 注册的回调方法是数组中的某一个 Promise 的状态变为 fulfilled 的时候就执行. 因为 Promise 的状态**只能改变一次**, 那么我们只需要把 Promise.race 中产生的 Promise 对象的 resolve 方法, 注入到数组中的每一个 Promise 实例中的回调函数中即可。
```
Promise.race = function (args) {
return new Promise((resolve, reject) => {
for (let i = 0, len = args.length; i < len; i++) {
args[i].then(resolve, reject)
}
})
}
```
### 手写防抖函数
函数防抖是指在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则重新计时。这可以使用在一些点击请求的事件上,避免因为用户的多次点击向后端发送多次请求。也可以[点击](https://www.kancloud.cn/vvmily_king/vvmily/2331774)查看以往。
```
// 函数防抖的实现
function debounce(fn, wait) {
let timer = null;
return function() {
let context = this,
args = arguments;
// 如果此时存在定时器的话,则取消之前的定时器重新记时
if (timer) {
clearTimeout(timer);
timer = null;
}
// 设置定时器,使事件间隔指定事件后执行
timer = setTimeout(() => {
fn.apply(context, args);
}, wait);
};
}
```
### 手写节流函数
函数节流是指规定一个单位时间,在这个单位时间内,只能有一次触发事件的回调函数执行,如果在同一个单位时间内某事件被触发多次,只有一次能生效。节流可以使用在 scroll 函数的事件监听上,通过事件节流来降低事件调用的频率。也可以[点击](https://www.kancloud.cn/vvmily_king/vvmily/2331774)查看以往。
```
// 函数节流的实现;
function throttle(fn, delay) {
let curTime = Date.now();
return function() {
let context = this,
args = arguments,
nowTime = Date.now();
// 如果两次时间间隔超过了指定时间,则执行函数。
if (nowTime - curTime >= delay) {
curTime = Date.now();
return fn.apply(context, args);
}
};
}
```
### 手写 call 函数
call 函数的实现步骤:
1. 判断调用对象是否为函数,即使我们是定义在函数的原型上的,但是可能出现使用 call 等方式调用的情况。
2. 判断传入上下文对象是否存在,如果不存在,则设置为 window 。
3. 处理传入的参数,截取第一个参数后的所有参数。
4. 将函数作为上下文对象的一个属性。
5. 使用上下文对象来调用这个方法,并保存返回结果。
6. 删除刚才新增的属性。
7. 返回结果。
```
// call函数实现
Function.prototype.myCall = function(context) {
// 判断调用对象
if (typeof this !== "function") {
console.error("type error");
}
// 获取参数
let args = [...arguments].slice(1),
result = null;
// 判断 context 是否传入,如果未传入则设置为 window
context = context || window;
// 将调用函数设为对象的方法
context.fn = this;
// 调用函数
result = context.fn(...args);
// 将属性删除
delete context.fn;
return result;
};
```
### 手写 apply 函数
apply 函数的实现步骤:
1. 判断调用对象是否为函数,即使我们是定义在函数的原型上的,但是可能出现使用 call 等方式调用的情况。
2. 判断传入上下文对象是否存在,如果不存在,则设置为 window 。
3. 将函数作为上下文对象的一个属性。
4. 判断参数值是否传入
5. 使用上下文对象来调用这个方法,并保存返回结果。
6. 删除刚才新增的属性
7. 返回结果
```
// apply 函数实现
Function.prototype.myApply = function(context) {
// 判断调用对象是否为函数
if (typeof this !== "function") {
throw new TypeError("Error");
}
let result = null;
// 判断 context 是否存在,如果未传入则为 window
context = context || window;
// 将函数设为对象的方法
context.fn = this;
// 调用方法
if (arguments[1]) {
result = context.fn(...arguments[1]);
} else {
result = context.fn();
}
// 将属性删除
delete context.fn;
return result;
};
```
### 手写 bind 函数
bind 函数的实现步骤:
1. 判断调用对象是否为函数,即使我们是定义在函数的原型上的,但是可能出现使用 call 等方式调用的情况。
2. 保存当前函数的引用,获取其余传入参数值。
3. 创建一个函数返回
4. 函数内部使用 apply 来绑定函数调用,需要判断函数作为构造函数的情况,这个时候需要传入当前函数的 this 给 apply 调用,其余情况都传入指定的上下文对象。
```
// bind 函数实现
Function.prototype.myBind = function(context) {
// 判断调用对象是否为函数
if (typeof this !== "function") {
throw new TypeError("Error");
}
// 获取参数
var args = [...arguments].slice(1),
fn = this;
return function Fn() {
// 根据调用方式,传入不同绑定值
return fn.apply(
this instanceof Fn ? this : context,
args.concat(...arguments)
);
};
};
```
### 实现AJAX请求
AJAX是 Asynchronous JavaScript and XML 的缩写,指的是通过 JavaScript 的 异步通信,从服务器获取 XML 文档从中提取数据,再更新当前网页的对应部分,而不用刷新整个网页。
创建AJAX请求的步骤:
* **创建一个 XMLHttpRequest 对象。**
* 在这个对象上**使用 open 方法创建一个 HTTP 请求**,open 方法所需要的参数是请求的方法、请求的地址、是否异步和用户的认证信息。
* 在发起请求前,可以为这个对象**添加一些信息和监听函数**。比如说可以通过 setRequestHeader 方法来为请求添加头信息。还可以为这个对象添加一个状态监听函数。一个 XMLHttpRequest 对象一共有 5 个状态,当它的状态变化时会触发onreadystatechange 事件,可以通过设置监听函数,来处理请求成功后的结果。当对象的 readyState 变为 4 的时候,代表服务器返回的数据接收完成,这个时候可以通过判断请求的状态,如果状态是 2xx 或者 304 的话则代表返回正常。这个时候就可以通过 response 中的数据来对页面进行更新了。
* 当对象的属性和监听函数设置完成后,最后调**用 sent 方法来向服务器发起请求**,可以传入参数作为发送的数据体。
```
const SERVER_URL = "/server";
let xhr = new XMLHttpRequest();
// 创建 Http 请求
xhr.open("GET", SERVER_URL, true);
// 设置状态监听函数
xhr.onreadystatechange = function() {
if (this.readyState !== 4) return;
// 当请求成功时
if (this.status === 200) {
handle(this.response);
} else {
console.error(this.statusText);
}
};
// 设置请求失败时的监听函数
xhr.onerror = function() {
console.error(this.statusText);
};
// 设置请求头信息
xhr.responseType = "json";
xhr.setRequestHeader("Accept", "application/json");
// 发送 Http 请求
xhr.send(null);
```
### 实现浅拷贝
浅拷贝是指,一个新的对象对原始对象的属性值进行精确地拷贝,如果拷贝的是基本数据类型,拷贝的就是基本数据类型的值,如果是引用数据类型,拷贝的就是内存地址。如果其中一个对象的引用内存地址发生改变,另一个对象也会发生变化。
1. `Object.assign()`:是ES6中对象的拷贝方法,接受的第一个参数是目标对象,其余参数是源对象,用法:`Object.assign(target, source_1, ···)`,该方法可以实现浅拷贝,也可以实现一维对象的深拷贝。
2. 扩展运算符:使用扩展运算符可以在构造字面量对象的时候,进行属性的拷贝。语法:`let cloneObj = { ...obj };`。
3. **Array.prototype.slice**:`arr.slice()`。
4. **Array.prototype.concat**:`arr.concat()`。
5. 手写浅拷贝:
```
// 浅拷贝的实现;
function shallowCopy(object) {
// 只拷贝对象
if (!object || typeof object !== "object") return;
// 根据 object 的类型判断是新建一个数组还是对象
let newObject = Array.isArray(object) ? [] : {};
// 遍历 object,并且判断是 object 的属性才拷贝
for (let key in object) {
if (object.hasOwnProperty(key)) {
newObject[key] = object[key];
}
}
return newObject;
}
```
### 实现深拷贝
* **浅拷贝:** 浅拷贝指的是将一个对象的属性值复制到另一个对象,如果有的属性的值为引用类型的话,那么会将这个引用的地址复制给对象,因此两个对象会有同一个引用类型的引用。浅拷贝可以使用 Object.assign 和展开运算符来实现。
* **深拷贝:** 深拷贝相对浅拷贝而言,如果遇到属性值为引用类型的时候,它新建一个引用类型并将对应的值复制给它,因此对象获得的一个新的引用类型而不是一个原有类型的引用。深拷贝对于一些对象可以使用 JSON 的两个函数来实现,但是由于 JSON 的对象格式比 js 的对象格式更加严格,所以如果属性值里边出现函数或者 Symbol 类型的值时,会转换失败。
1. JSON.stringify()
* `JSON.parse(JSON.stringify(obj))`是目前比较常用的深拷贝方法之一,它的原理就是利用`JSON.stringify` 将`js`对象序列化(JSON字符串),再使用`JSON.parse`来反序列化(还原)`js`对象。
* 这个方法可以简单粗暴的实现深拷贝,但是还存在问题,拷贝的对象中如果有函数,undefined,symbol,当使用过`JSON.stringify()`进行处理之后,都会消失。
```
let obj1 = { a: 0,
b: {
c: 0
}
};
let obj2 = JSON.parse(JSON.stringify(obj1));
obj1.a = 1;
obj1.b.c = 1;
console.log(obj1); // {a: 1, b: {c: 1}}
console.log(obj2); // {a: 0, b: {c: 0}}
```
2. 手写实现深拷贝函数
```
// 深拷贝的实现
function deepCopy(object) {
if (!object || typeof object !== "object") return;
let newObject = Array.isArray(object) ? [] : {};
for (let key in object) {
if (object.hasOwnProperty(key)) {
newObject[key] =
typeof object[key] === "object" ? deepCopy(object[key]) : object[key];
}
}
return newObject;
}
```
### 实现数组的扁平化
**递归实现**
* 普通的递归思路很容易理解,就是通过循环递归的方式,一项一项地去遍历,如果每一项还是一个数组,那么就继续往下遍历,利用递归程序的方法,来实现数组的每一项的连接:
```
let arr = [1, [2, [3, 4, 5]]];
function flatten(arr) {
let result = [];
for(let i = 0; i < arr.length; i++) {
if(Array.isArray(arr[i])) {
result = result.concat(flatten(arr[i]));
} else {
result.push(arr[i]);
}
}
return result;
}
flatten(arr); // [1, 2, 3, 4,5]
```
**reduce 函数迭代**
* 从上面普通的递归函数中可以看出,其实就是对数组的每一项进行处理,那么其实也可以用reduce 来实现数组的拼接,从而简化第一种方法的代码,改造后的代码如下所示:
```
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
return arr.reduce(function(prev, next){
return prev.concat(Array.isArray(next) ? flatten(next) : next)
}, [])
}
console.log(flatten(arr));// [1, 2, 3, 4,5]
```
**扩展运算符实现**
* 这个方法的实现,采用了扩展运算符和 some 的方法,两者共同使用,达到数组扁平化的目的:
```
let arr = [1, [2, [3, 4]]];
function flatten(arr) {
while (arr.some(item => Array.isArray(item))) {
arr = [].concat(...arr);
}
return arr;
}
console.log(flatten(arr)); // [1, 2, 3, 4,5]
```
### 实现数组去重
给定某无序数组,要求去除数组中的重复数字并且返回新的无重复数组。(方法很多,就不一一列举了)
* ES6方法(使用数据结构集合):
```
const array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];
Array.from(new Set(array)); // [1, 2, 3, 5, 9, 8]
```
* ES5方法:使用map存储不重复的数字
```
const array = [1, 2, 3, 5, 1, 5, 9, 1, 2, 8];
uniqueArray(array); // [1, 2, 3, 5, 9, 8]
function uniqueArray(array) {
let map = {};
let res = [];
for(var i = 0; i < array.length; i++) {
if(!map.hasOwnProperty([array[i]])) {
map[array[i]] = 1;
res.push(array[i]);
}
}
return res;
}
```
### 大数相加
如果想要对一个超大的整数(`> Number.MAX_SAFE_INTEGER`)进行加法运算,但是又想输出一般形式,那么使用 + 是无法达到的,一旦数字超过 `Number.MAX_SAFE_INTEGER` 数字会被立即转换为科学计数法,并且数字精度相比以前将会有误差。
实现一个算法进行大数的相加:
```
function sumBigNumber(a, b) {
let res = '';
let temp = 0;
a = a.split('');
b = b.split('');
while (a.length || b.length || temp) {
temp += ~~a.pop() + ~~b.pop();
res = (temp % 10) + res;
temp = temp > 9
}
return res.replace(/^0+/, '');
}
```
其主要的思路如下:
* 首先用字符串的方式来保存大数,这样数字在数学表示上就不会发生变化
* 初始化res,temp来保存中间的计算结果,并将两个字符串转化为数组,以便进行每一位的加法运算
* 将两个数组的对应的位进行相加,两个数相加的结果可能大于10,所以可能要仅为,对10进行取余操作,将结果保存在当前位
* 判断当前位是否大于9,也就是是否会进位,若是则将temp赋值为true,因为在加法运算中,true会自动隐式转化为1,以便于下一次相加
* 重复上述操作,直至计算结束
### 大数相乘
```
function multiplyBigNum(num1, num2) {
//判断输入是不是数字
if (isNaN(num1) || isNaN(num2)) return "";
num1 = num1 + ""
num2 = num2 + ""
let len1 = num1.length,
len2 = num2.length;
let pos = [];
//j放外面,先固定被乘数的一位,分别去乘乘数的每一位,更符合竖式演算法
for (let j = len2 - 1; j >= 0; j--) {
for (let i = len1 - 1; i >= 0; i--) {
//两个个位数相乘,最多产生两位数,index1代表十位,index2代表个位
let index1 = i + j,
index2 = i + j + 1;
//两个个位数乘积加上当前位置个位已累积的数字,会产生进位,比如08 + 7 = 15,产生了进位1
let mul = num1[i] * num2[j] + (pos[index2] || 0);
//mul包含新计算的十位,加上原有的十位就是最新的十位
pos[index1] = Math.floor(mul / 10) + (pos[index1] || 0);
//mul的个位就是最新的个位
pos[index2] = mul % 10;
}
}
//去掉前置0
let result = pos.join("").replace(/^0+/, "");
return result - 0 || '0';
}
```
### 实现 add(1)(2)(3)
函数柯里化概念: 柯里化(Currying)是把接受多个参数的函数转变为接受一个单一参数的函数,并且返回接受余下的参数且返回结果的新函数的技术。
```
function add (a) {
return function (b) {
return function (c) {
return a + b + c;
}
}
}
console.log(add(1)(2)(3)); // 6
```
### 实现类数组转化为数组
类数组转换为数组的方法有这样几种:
* 通过 call 调用数组的 slice 方法来实现转换
```
Array.prototype.slice.call(arrayLike);
```
* 通过 call 调用数组的 splice 方法来实现转换
```
Array.prototype.splice.call(arrayLike, 0);
```
* 通过 apply 调用数组的 concat 方法来实现转换
```
Array.prototype.concat.apply([], arrayLike);
```
* 通过 Array.from 方法来实现转换
```
Array.from(arrayLike);
```
### 将js对象转化为树形结构
```
// 转换前:
source = [{
id: 1,
pid: 0,
name: 'body'
}, {
id: 2,
pid: 1,
name: 'title'
}, {
id: 3,
pid: 2,
name: 'div'
}]
// 转换为:
tree = [{
id: 1,
pid: 0,
name: 'body',
children: [{
id: 2,
pid: 1,
name: 'title',
children: [{
id: 3,
pid: 1,
name: 'div'
}]
}
}]
```
代码实现:
```
function jsonToTree(data) {
// 初始化结果数组,并判断输入数据的格式
let result = []
if(!Array.isArray(data)) {
return result
}
// 使用map,将当前对象的id与当前对象对应存储起来
let map = {};
data.forEach(item => {
map[item.id] = item;
});
//
data.forEach(item => {
let parent = map[item.pid];
if(parent) {
(parent.children || (parent.children = [])).push(item);
} else {
result.push(item);
}
});
return result;
}
```
### 实现prototype继承
所谓的原型链继承就是让新实例的原型等于父类的实例:
```
//父方法
function SupperFunction(flag1){
this.flag1 = flag1;
}
//子方法
function SubFunction(flag2){
this.flag2 = flag2;
}
//父实例
var superInstance = new SupperFunction(true);
//子继承父
SubFunction.prototype = superInstance;
//子实例
var subInstance = new SubFunction(false);
//子调用自己和父的属性
subInstance.flag1; // true
subInstance.flag2; // false
```
### 实现双向数据绑定
```
let obj = {}
let input = document.getElementById('input')
let span = document.getElementById('span')
// 数据劫持
Object.defineProperty(obj, 'text', {
configurable: true,
enumerable: true,
get() {
console.log('获取数据了')
},
set(newVal) {
console.log('数据更新了')
input.value = newVal
span.innerHTML = newVal
}
})
// 输入监听
input.addEventListener('keyup', function(e) {
obj.text = e.target.value
})
```
### 实现斐波那契数列
```
// 递归
function fn (n){
if(n==0) return 0
if(n==1) return 1
return fn(n-2)+fn(n-1)
}
// 优化
function fibonacci2(n) {
const arr = [1, 1, 2];
const arrLen = arr.length;
if (n <= arrLen) {
return arr[n];
}
for (let i = arrLen; i < n; i++) {
arr.push(arr[i - 1] + arr[ i - 2]);
}
return arr[arr.length - 1];
}
// 非递归
function fn(n) {
let pre1 = 1;
let pre2 = 1;
let current = 2;
if (n <= 2) {
return current;
}
for (let i = 2; i < n; i++) {
pre1 = pre2;
pre2 = current;
current = pre1 + pre2;
}
return current;
}
```
### 使用 setTimeout 实现 setInterval
setInterval 的作用是每隔一段指定时间执行一个函数,但是这个执行不是真的到了时间立即执行,它真正的作用是每隔一段时间将事件加入事件队列中去,只有当当前的执行栈为空的时候,才能去从事件队列中取出事件执行。所以可能会出现这样的情况,就是当前执行栈执行的时间很长,导致事件队列里边积累多个定时器加入的事件,当执行栈结束的时候,这些事件会依次执行,因此就不能到间隔一段时间执行的效果。
针对 setInterval 的这个缺点,我们可以使用 setTimeout 递归调用来模拟 setInterval,这样我们就确保了只有一个事件结束了,我们才会触发下一个定时器事件,这样解决了 setInterval 的问题。
实现思路是使用递归函数,不断地去执行 setTimeout 从而达到 setInterval 的效果
```
function mySetInterval(fn, timeout) {
// 控制器,控制定时器是否继续执行
var timer = {
flag: true
};
// 设置递归函数,模拟定时器执行。
function interval() {
if (timer.flag) {
fn();
setTimeout(interval, timeout);
}
}
// 启动定时器
setTimeout(interval, timeout);
// 返回控制器
return timer;
}
```
- 首页
- 2021年
- 基础知识
- 同源策略
- 跨域
- css
- less
- scss
- reset
- 超出文本显示省略号
- 默认滚动条
- 清除浮动
- line-height与vertical-align
- box-sizing
- 动画
- 布局
- JavaScript
- 设计模式
- 深浅拷贝
- 排序
- canvas
- 防抖节流
- 获取屏幕/可视区域宽高
- 正则
- 重绘重排
- rem换算
- 手写算法
- apply、call和bind原理与实现
- this的理解-普通函数、箭头函数
- node
- nodejs
- express
- koa
- egg
- 基于nodeJS的全栈项目
- 小程序
- 常见问题
- ec-canvas之横竖屏切换重绘
- 公众号后台基本配置
- 小程序发布协议更新
- 小程序引入iconfont字体
- Uni-app
- 环境搭建
- 项目搭建
- 数据库
- MySQL数据库安装
- 数据库图形化界面常用命令行
- cmd命令行操作数据库
- Redis安装
- APP
- 控制缩放meta
- GIT
- 常用命令
- vsCode
- 常用插件
- Ajax
- axios-services
- 文章
- 如何让代码更加优雅
- 虚拟滚动
- 网站收藏
- 防抖节流之定时器清除问题
- 号称破解全网会员的脚本
- 资料笔记
- 资料笔记2
- 公司面试题
- 服务器相关
- 前端自动化部署-jenkins
- nginx.conf配置
- https添加证书
- shell基本命令
- 微型ssh-deploy前端部署插件
- webpack
- 深入理解loader
- 深入理解plugin
- webpack注意事项
- vite和webpack区别
- React
- react+antd搭建
- Vue
- vue-cli
- vue.config.js
- 面板分割左右拖动
- vvmily-admin-template
- v-if与v-for那个优先级高?
- 下载excel
- 导入excel
- Echart-China-Map
- vue-xlsx(解析excel)
- 给elementUI的el-table添加骨架
- cdn引入配置
- Vue2.x之defineProperty应用
- 彻底弄懂diff算法的key作用
- 复制模板内容
- 表格操作按钮太多
- element常用组件二次封装
- Vue3.x
- Vue3快速上手(第一天)
- Vue3.x快速上手(第二天)
- Vue3.x快速上手(第三天)
- vue3+element-plus搭建项目
- vue3
- 脚手架
- vvmily-cli
- TS
- ts笔记
- common
- Date
- utils
- axios封装
- 2022年
- HTML
- CSS基础
- JavaScript 基础
- 前端框架Vue
- 计算机网络
- 浏览器相关
- 性能优化
- js手写代码
- 前端安全
- 前端算法
- 前端构建与编译
- 操作系统
- Node.js
- 一些开放问题、智力题