# 4.3 清除:收尾和垃圾收集
程序员都知道“初始化”的重要性,但通常忘记清除的重要性。毕竟,谁需要来清除一个`int`呢?但是对于库来说,用完后简单地“释放”一个对象并非总是安全的。当然,Java可用垃圾收集器回收由不再使用的对象占据的内存。现在考虑一种非常特殊且不多见的情况。假定我们的对象分配了一个“特殊”内存区域,没有使用`new`。垃圾收集器只知道释放那些由`new`分配的内存,所以不知道如何释放对象的“特殊”内存。为解决这个问题,Java提供了一个名为`finalize()`的方法,可为我们的类定义它。在理想情况下,它的工作原理应该是这样的:一旦垃圾收集器准备好释放对象占用的存储空间,它首先调用`finalize()`,而且只有在下一次垃圾收集过程中,才会真正回收对象的内存。所以如果使用`finalize()`,就可以在垃圾收集期间进行一些重要的清除或清扫工作。
但也是一个潜在的编程陷阱,因为有些程序员(特别是在C++开发背景的)刚开始可能会错误认为它就是在C++中为“析构器”(Destructor)使用的`finalize()`——析构(清除)一个对象的时候,肯定会调用这个函数。但在这里有必要区分一下C++和Java的区别,因为C++的对象肯定会被清除(排开编程错误的因素),而Java对象并非肯定能作为垃圾被“收集”去。或者换句话说:
垃圾收集并不等于“析构”!
若能时刻牢记这一点,踩到陷阱的可能性就会大大减少。它意味着在我们不再需要一个对象之前,有些行动是必须采取的,而且必须由自己来采取这些行动。Java并未提供“析构器”或者类似的概念,所以必须创建一个原始的方法,用它来进行这种清除。例如,假设在对象创建过程中,它会将自己描绘到屏幕上。如果不从屏幕明确删除它的图像,那么它可能永远都不会被清除。若在`finalize()`里置入某种删除机制,那么假设对象被当作垃圾收掉了,图像首先会将自身从屏幕上移去。但若未被收掉,图像就会保留下来。所以要记住的第二个重点是:
我们的对象可能不会当作垃圾被收掉!
有时可能发现一个对象的存储空间永远都不会释放,因为自己的程序永远都接近于用光空间的临界点。若程序执行结束,而且垃圾收集器一直都没有释放我们创建的任何对象的存储空间,则随着程序的退出,那些资源会返回给操作系统。这是一件好事情,因为垃圾收集本身也要消耗一些开销。如永远都不用它,那么永远也不用支出这部分开销。
## 4.3.1 `finalize()`用途何在
此时,大家可能已相信了自己应该将`finalize()`作为一种常规用途的清除方法使用。它有什么好处呢?
要记住的第三个重点是:
垃圾收集只跟内存有关!
也就是说,垃圾收集器存在的唯一原因是为了回收程序不再使用的内存。所以对于与垃圾收集有关的任何活动来说,其中最值得注意的是`finalize()`方法,它们也必须同内存以及它的回收有关。
但这是否意味着假如对象包含了其他对象,`finalize()`就应该明确释放那些对象呢?答案是否定的——垃圾收集器会负责释放所有对象占据的内存,无论这些对象是如何创建的。它将对`finalize()`的需求限制到特殊的情况。在这种情况下,我们的对象可采用与创建对象时不同的方法分配一些存储空间。但大家或许会注意到,Java中的所有东西都是对象,所以这到底是怎么一回事呢?
之所以要使用`finalize()`,看起来似乎是由于有时需要采取与Java的普通方法不同的一种方法,通过分配内存来做一些具有C风格的事情。这主要可以通过“固有方法”来进行,它是从Java里调用非Java方法的一种方式(固有方法的问题在附录A讨论)。C和C++是目前唯一获得固有方法支持的语言。但由于它们能调用通过其他语言编写的子程序,所以能够有效地调用任何东西。在非Java代码内部,也许能调用C的`malloc()`系列函数,用它分配存储空间。而且除非调用了`free()`,否则存储空间不会得到释放,从而造成内存“漏洞”的出现。当然,`free()`是一个C和C++函数,所以我们需要在`finalize()`内部的一个固有方法中调用它。
读完上述文字后,大家或许已弄清楚了自己不必过多地使用`finalize()`。这个思想是正确的;它并不是进行普通清除工作的理想场所。那么,普通的清除工作应在何处进行呢?
## 4.3.2 必须执行清除
为清除一个对象,那个对象的用户必须在希望进行清除的地点调用一个清除方法。这听起来似乎很容易做到,但却与C++“析构器”的概念稍有抵触。在C++中,所有对象都会析构(清除)。或者换句话说,所有对象都“应该”析构。若将C++对象创建成一个本地对象,比如在栈中创建(在Java中是不可能的),那么清除或析构工作就会在“结束花括号”所代表的、创建这个对象的作用域的末尾进行。若对象是用`new`创建的(类似于Java),那么当程序员调用C++的`delete`命令时(Java没有这个命令),就会调用相应的析构器。若程序员忘记了,那么永远不会调用析构器,我们最终得到的将是一个内存“漏洞”,另外还包括对象的其他部分永远不会得到清除。
相反,Java不允许我们创建本地(局部)对象——无论如何都要使用`new`。但在Java中,没有`delete`命令来释放对象,因为垃圾收集器会帮助我们自动释放存储空间。所以如果站在比较简化的立场,我们可以说正是由于存在垃圾收集机制,所以Java没有析构器。然而,随着以后学习的深入,就会知道垃圾收集器的存在并不能完全消除对析构器的需要,或者说不能消除对析构器代表的那种机制的需要(而且绝对不能直接调用`finalize()`,所以应尽量避免用它)。若希望执行除释放存储空间之外的其他某种形式的清除工作,仍然必须调用Java中的一个方法。它等价于C++的析构器,只是没后者方便。
`finalize()`最有用处的地方之一是观察垃圾收集的过程。下面这个例子向大家展示了垃圾收集所经历的过程,并对前面的陈述进行了总结。
```
//: Garbage.java
// Demonstration of the garbage
// collector and finalization
class Chair {
static boolean gcrun = false;
static boolean f = false;
static int created = 0;
static int finalized = 0;
int i;
Chair() {
i = ++created;
if(created == 47)
System.out.println("Created 47");
}
protected void finalize() {
if(!gcrun) {
gcrun = true;
System.out.println(
"Beginning to finalize after " +
created + " Chairs have been created");
}
if(i == 47) {
System.out.println(
"Finalizing Chair #47, " +
"Setting flag to stop Chair creation");
f = true;
}
finalized++;
if(finalized >= created)
System.out.println(
"All " + finalized + " finalized");
}
}
public class Garbage {
public static void main(String[] args) {
if(args.length == 0) {
System.err.println("Usage: \n" +
"java Garbage before\n or:\n" +
"java Garbage after");
return;
}
while(!Chair.f) {
new Chair();
new String("To take up space");
}
System.out.println(
"After all Chairs have been created:\n" +
"total created = " + Chair.created +
", total finalized = " + Chair.finalized);
if(args[0].equals("before")) {
System.out.println("gc():");
System.gc();
System.out.println("runFinalization():");
System.runFinalization();
}
System.out.println("bye!");
if(args[0].equals("after"))
System.runFinalizersOnExit(true);
}
} ///:~
```
上面这个程序创建了许多`Chair`对象,而且在垃圾收集器开始运行后的某些时候,程序会停止创建`Chair`。由于垃圾收集器可能在任何时间运行,所以我们不能准确知道它在何时启动。因此,程序用一个名为`gcrun`的标记来指出垃圾收集器是否已经开始运行。利用第二个标记`f`,`Chair`可告诉`main()`它应停止对象的生成。这两个标记都是在`finalize()`内部设置的,它调用于垃圾收集期间。
另两个`static`变量——`created`以及`finalized`——分别用于跟踪已创建的对象数量以及垃圾收集器已进行完收尾工作的对象数量。最后,每个`Chair`都有它自己的(非`static`)`int i`,所以能跟踪了解它具体的编号是多少。编号为47的`Chair`进行完收尾工作后,标记会设为`true`,最终结束`Chair`对象的创建过程。
所有这些都在`main()`的内部进行——在下面这个循环里:
```
while(!Chair.f) {
new Chair();
new String("To take up space");
}
```
大家可能会疑惑这个循环什么时候会停下来,因为内部没有任何改变`Chair.f`值的语句。然而,`finalize()`进程会改变这个值,直至最终对编号47的对象进行收尾处理。
每次循环过程中创建的`String`对象只是属于额外的垃圾,用于吸引垃圾收集器——一旦垃圾收集器对可用内存的容量感到“紧张不安”,就会开始关注它。
运行这个程序的时候,提供了一个命令行参数`before`或者`after`。其中,`before`参数会调用`System.gc()`方法(强制执行垃圾收集器),同时还会调用`System.runFinalization()`方法,以便进行收尾工作。这些方法都可在Java 1.0中使用,但通过使用`after`参数而调用的`runFinalizersOnExit()`方法却只有Java 1.1及后续版本提供了对它的支持(注释③)。注意可在程序执行的任何时候调用这个方法,而且收尾程序的执行与垃圾收集器是否运行是无关的。
③:不幸的是,Java 1.0采用的垃圾收集器方案永远不能正确地调用`finalize()`。因此,`finalize()`方法(特别是那些用于关闭文件的)事实上经常都不会得到调用。现在有些文章声称所有收尾模块都会在程序退出的时候得到调用——即使到程序中止的时候,垃圾收集器仍未针对那些对象采取行动。这并不是真实的情况,所以我们根本不能指望`finalize()`能为所有对象而调用。特别地,`finalize()`在Java 1.0里几乎毫无用处。
前面的程序向我们揭示出:在Java 1.1中,收尾模块肯定会运行这一许诺已成为现实——但前提是我们明确地强制它采取这一操作。若使用一个不是`before`或`after`的参数(如`none`),那么两个收尾工作都不会进行,而且我们会得到象下面这样的输出:
```
Created 47
Created 47
Beginning to finalize after 8694 Chairs have been created
Finalizing Chair #47, Setting flag to stop Chair creation
After all Chairs have been created:
total created = 9834, total finalized = 108
bye!
```
因此,到程序结束的时候,并非所有收尾模块都会得到调用(注释④)。为强制进行收尾工作,可先调用`System.gc()`,再调用`System.runFinalization()`。这样可清除到目前为止没有使用的所有对象。这样做一个稍显奇怪的地方是在调用`runFinalization()`之前调用`gc()`,这看起来似乎与Sun公司的文档说明有些抵触,它宣称首先运行收尾模块,再释放存储空间。然而,若在这里首先调用`runFinalization()`,再调用`gc()`,收尾模块根本不会执行。
④:到你读到本书时,有些Java虚拟机(JVM)可能已开始表现出不同的行为。
针对所有对象,Java 1.1有时之所以会默认为跳过收尾工作,是由于它认为这样做的开销太大。不管用哪种方法强制进行垃圾收集,都可能注意到比没有额外收尾工作时较长的时间延迟。
- Java 编程思想
- 写在前面的话
- 引言
- 第1章 对象入门
- 1.1 抽象的进步
- 1.2 对象的接口
- 1.3 实现方案的隐藏
- 1.4 方案的重复使用
- 1.5 继承:重新使用接口
- 1.6 多态对象的互换使用
- 1.7 对象的创建和存在时间
- 1.8 异常控制:解决错误
- 1.9 多线程
- 1.10 永久性
- 1.11 Java和因特网
- 1.12 分析和设计
- 1.13 Java还是C++
- 第2章 一切都是对象
- 2.1 用引用操纵对象
- 2.2 所有对象都必须创建
- 2.3 绝对不要清除对象
- 2.4 新建数据类型:类
- 2.5 方法、参数和返回值
- 2.6 构建Java程序
- 2.7 我们的第一个Java程序
- 2.8 注释和嵌入文档
- 2.9 编码样式
- 2.10 总结
- 2.11 练习
- 第3章 控制程序流程
- 3.1 使用Java运算符
- 3.2 执行控制
- 3.3 总结
- 3.4 练习
- 第4章 初始化和清除
- 4.1 用构造器自动初始化
- 4.2 方法重载
- 4.3 清除:收尾和垃圾收集
- 4.4 成员初始化
- 4.5 数组初始化
- 4.6 总结
- 4.7 练习
- 第5章 隐藏实现过程
- 5.1 包:库单元
- 5.2 Java访问指示符
- 5.3 接口与实现
- 5.4 类访问
- 5.5 总结
- 5.6 练习
- 第6章 类复用
- 6.1 组合的语法
- 6.2 继承的语法
- 6.3 组合与继承的结合
- 6.4 到底选择组合还是继承
- 6.5 protected
- 6.6 累积开发
- 6.7 向上转换
- 6.8 final关键字
- 6.9 初始化和类装载
- 6.10 总结
- 6.11 练习
- 第7章 多态性
- 7.1 向上转换
- 7.2 深入理解
- 7.3 覆盖与重载
- 7.4 抽象类和方法
- 7.5 接口
- 7.6 内部类
- 7.7 构造器和多态性
- 7.8 通过继承进行设计
- 7.9 总结
- 7.10 练习
- 第8章 对象的容纳
- 8.1 数组
- 8.2 集合
- 8.3 枚举器(迭代器)
- 8.4 集合的类型
- 8.5 排序
- 8.6 通用集合库
- 8.7 新集合
- 8.8 总结
- 8.9 练习
- 第9章 异常差错控制
- 9.1 基本异常
- 9.2 异常的捕获
- 9.3 标准Java异常
- 9.4 创建自己的异常
- 9.5 异常的限制
- 9.6 用finally清除
- 9.7 构造器
- 9.8 异常匹配
- 9.9 总结
- 9.10 练习
- 第10章 Java IO系统
- 10.1 输入和输出
- 10.2 增添属性和有用的接口
- 10.3 本身的缺陷:RandomAccessFile
- 10.4 File类
- 10.5 IO流的典型应用
- 10.6 StreamTokenizer
- 10.7 Java 1.1的IO流
- 10.8 压缩
- 10.9 对象序列化
- 10.10 总结
- 10.11 练习
- 第11章 运行期类型识别
- 11.1 对RTTI的需要
- 11.2 RTTI语法
- 11.3 反射:运行期类信息
- 11.4 总结
- 11.5 练习
- 第12章 传递和返回对象
- 12.1 传递引用
- 12.2 制作本地副本
- 12.3 克隆的控制
- 12.4 只读类
- 12.5 总结
- 12.6 练习
- 第13章 创建窗口和程序片
- 13.1 为何要用AWT?
- 13.2 基本程序片
- 13.3 制作按钮
- 13.4 捕获事件
- 13.5 文本字段
- 13.6 文本区域
- 13.7 标签
- 13.8 复选框
- 13.9 单选钮
- 13.10 下拉列表
- 13.11 列表框
- 13.12 布局的控制
- 13.13 action的替代品
- 13.14 程序片的局限
- 13.15 视窗化应用
- 13.16 新型AWT
- 13.17 Java 1.1用户接口API
- 13.18 可视编程和Beans
- 13.19 Swing入门
- 13.20 总结
- 13.21 练习
- 第14章 多线程
- 14.1 反应灵敏的用户界面
- 14.2 共享有限的资源
- 14.3 堵塞
- 14.4 优先级
- 14.5 回顾runnable
- 14.6 总结
- 14.7 练习
- 第15章 网络编程
- 15.1 机器的标识
- 15.2 套接字
- 15.3 服务多个客户
- 15.4 数据报
- 15.5 一个Web应用
- 15.6 Java与CGI的沟通
- 15.7 用JDBC连接数据库
- 15.8 远程方法
- 15.9 总结
- 15.10 练习
- 第16章 设计模式
- 16.1 模式的概念
- 16.2 观察器模式
- 16.3 模拟垃圾回收站
- 16.4 改进设计
- 16.5 抽象的应用
- 16.6 多重分发
- 16.7 访问器模式
- 16.8 RTTI真的有害吗
- 16.9 总结
- 16.10 练习
- 第17章 项目
- 17.1 文字处理
- 17.2 方法查找工具
- 17.3 复杂性理论
- 17.4 总结
- 17.5 练习
- 附录A 使用非JAVA代码
- 附录B 对比C++和Java
- 附录C Java编程规则
- 附录D 性能
- 附录E 关于垃圾收集的一些话
- 附录F 推荐读物