# 16.5 抽象的应用
走到这一步,接下来该考虑一下设计模式剩下的部分了——在哪里使用类?既然归类到垃圾箱的办法非常不雅且过于暴露,为什么不隔离那个过程,把它隐藏到一个类里呢?这就是著名的“如果必须做不雅的事情,至少应将其本地化到一个类里”规则。看起来就象下面这样:
![](https://box.kancloud.cn/37cbb34bf106495a9e38a4dd1192574b_372x109.gif)
现在,只要一种新类型的`Trash`加入方法,对`TrashSorter`对象的初始化就必须变动。可以想象,`TrashSorter`类看起来应该象下面这个样子:
```
class TrashSorter extends Vector {
void sort(Trash t) { /* ... */ }
}
```
也就是说,`TrashSorter`是由一系列引用构成的`Vector`(系列),而那些引用指向的又是由`Trash`引用构成的`Vector`;利用`addElement()`,可以安装新的`TrashSorter`,如下所示:
```
TrashSorter ts = new TrashSorter();
ts.addElement(new Vector());
```
但是现在,`sort()`却成为一个问题。用静态方式编码的方法如何应付一种新类型加入的事实呢?为解决这个问题,必须从`sort()`里将类型信息删除,使其需要做的所有事情就是调用一个通用方法,用它照料涉及类型处理的所有细节。这当然是对一个动态绑定方法进行描述的另一种方式。所以`sort()`会在序列中简单地遍历,并为每个`Vector`都调用一个动态绑定方法。由于这个方法的任务是收集它感兴趣的垃圾片,所以称之为`grab(Trash)`。结构现在变成了下面这样:
![](https://box.kancloud.cn/95a6ed6bd9d54dda7af6204375e8ab4d_408x214.gif)
其中,`TrashSorter`需要调用每个`grab()`方法;然后根据当前`Vector`容纳的是什么类型,会获得一个不同的结果。也就是说,`Vector`必须留意自己容纳的类型。解决这个问题的传统方法是创建一个基础“Trash bin”(垃圾筒)类,并为希望容纳的每个不同的类型都继承一个新的派生类。若Java有一个参数化的类型机制,那就也许是最直接的方法。但对于这种机制应该为我们构建的各个类,我们不应该进行麻烦的手工编码,以后的“观察”方式提供了一种更好的编码方式。
OOP设计一条基本的准则是“为状态的变化使用数据成员,为行为的变化使用多性形”。对于容纳`Paper`(纸张)的`Vector`,以及容纳`Glass`(玻璃)的`Vector`,大家最开始或许会认为分别用于它们的`grab()`方法肯定会产生不同的行为。但具体如何却完全取决于类型,而不是其他什么东西。可将其解释成一种不同的状态,而且由于Java有一个类可表示类型(`Class`),所以可用它判断特定的`Tbin`要容纳什么类型的`Trash`。
用于Tbin的构造器要求我们为其传递自己选择的一个`Class`。这样做可告诉`Vector`它希望容纳的是什么类型。随后,`grab()`方法用`Class BinType`和RTTI来检查我们传递给它的`Trash`对象是否与它希望收集的类型相符。
下面列出完整的解决方案。设定为注释的编号(如*1*)便于大家对照程序后面列出的说明。
```
//: RecycleB.java
// Adding more objects to the recycling problem
package c16.recycleb;
import c16.trash.*;
import java.util.*;
// A vector that admits only the right type:
class Tbin extends Vector {
Class binType;
Tbin(Class binType) {
this.binType = binType;
}
boolean grab(Trash t) {
// Comparing class types:
if(t.getClass().equals(binType)) {
addElement(t);
return true; // Object grabbed
}
return false; // Object not grabbed
}
}
class TbinList extends Vector { //(*1*)
boolean sort(Trash t) {
Enumeration e = elements();
while(e.hasMoreElements()) {
Tbin bin = (Tbin)e.nextElement();
if(bin.grab(t)) return true;
}
return false; // bin not found for t
}
void sortBin(Tbin bin) { // (*2*)
Enumeration e = bin.elements();
while(e.hasMoreElements())
if(!sort((Trash)e.nextElement()))
System.out.println("Bin not found");
}
}
public class RecycleB {
static Tbin bin = new Tbin(Trash.class);
public static void main(String[] args) {
// Fill up the Trash bin:
ParseTrash.fillBin("Trash.dat", bin);
TbinList trashBins = new TbinList();
trashBins.addElement(
new Tbin(Aluminum.class));
trashBins.addElement(
new Tbin(Paper.class));
trashBins.addElement(
new Tbin(Glass.class));
// add one line here: (*3*)
trashBins.addElement(
new Tbin(Cardboard.class));
trashBins.sortBin(bin); // (*4*)
Enumeration e = trashBins.elements();
while(e.hasMoreElements()) {
Tbin b = (Tbin)e.nextElement();
Trash.sumValue(b);
}
Trash.sumValue(bin);
}
} ///:~
```
(1) `TbinList`容纳一系列`Tbin`引用,所以在查找与我们传递给它的`Trash`对象相符的情况时,`sort()`能通过`Tbin`继承。
(2) `sortBin()`允许我们将一个完整的`Tbin`传递进去,而且它会在`Tbin`里遍历,挑选出每种`Trash`,并将其归类到特定的`Tbin`中。请注意这些代码的通用性:新类型加入时,它本身不需要任何改动。只要新类型加入(或发生其他事件)时大量代码都不需要变化,就表明我们设计的是一个容易扩展的系统。
(3) 现在可以体会添加新类型有多么容易了。为支持添加,只需要改动几行代码。如确实有必要,甚至可以进一步地改进设计,使更多的代码都保持“固定”。
(4) 一个方法调用使`bin`的内容归类到对应的、特定类型的垃圾筒里。
- Java 编程思想
- 写在前面的话
- 引言
- 第1章 对象入门
- 1.1 抽象的进步
- 1.2 对象的接口
- 1.3 实现方案的隐藏
- 1.4 方案的重复使用
- 1.5 继承:重新使用接口
- 1.6 多态对象的互换使用
- 1.7 对象的创建和存在时间
- 1.8 异常控制:解决错误
- 1.9 多线程
- 1.10 永久性
- 1.11 Java和因特网
- 1.12 分析和设计
- 1.13 Java还是C++
- 第2章 一切都是对象
- 2.1 用引用操纵对象
- 2.2 所有对象都必须创建
- 2.3 绝对不要清除对象
- 2.4 新建数据类型:类
- 2.5 方法、参数和返回值
- 2.6 构建Java程序
- 2.7 我们的第一个Java程序
- 2.8 注释和嵌入文档
- 2.9 编码样式
- 2.10 总结
- 2.11 练习
- 第3章 控制程序流程
- 3.1 使用Java运算符
- 3.2 执行控制
- 3.3 总结
- 3.4 练习
- 第4章 初始化和清除
- 4.1 用构造器自动初始化
- 4.2 方法重载
- 4.3 清除:收尾和垃圾收集
- 4.4 成员初始化
- 4.5 数组初始化
- 4.6 总结
- 4.7 练习
- 第5章 隐藏实现过程
- 5.1 包:库单元
- 5.2 Java访问指示符
- 5.3 接口与实现
- 5.4 类访问
- 5.5 总结
- 5.6 练习
- 第6章 类复用
- 6.1 组合的语法
- 6.2 继承的语法
- 6.3 组合与继承的结合
- 6.4 到底选择组合还是继承
- 6.5 protected
- 6.6 累积开发
- 6.7 向上转换
- 6.8 final关键字
- 6.9 初始化和类装载
- 6.10 总结
- 6.11 练习
- 第7章 多态性
- 7.1 向上转换
- 7.2 深入理解
- 7.3 覆盖与重载
- 7.4 抽象类和方法
- 7.5 接口
- 7.6 内部类
- 7.7 构造器和多态性
- 7.8 通过继承进行设计
- 7.9 总结
- 7.10 练习
- 第8章 对象的容纳
- 8.1 数组
- 8.2 集合
- 8.3 枚举器(迭代器)
- 8.4 集合的类型
- 8.5 排序
- 8.6 通用集合库
- 8.7 新集合
- 8.8 总结
- 8.9 练习
- 第9章 异常差错控制
- 9.1 基本异常
- 9.2 异常的捕获
- 9.3 标准Java异常
- 9.4 创建自己的异常
- 9.5 异常的限制
- 9.6 用finally清除
- 9.7 构造器
- 9.8 异常匹配
- 9.9 总结
- 9.10 练习
- 第10章 Java IO系统
- 10.1 输入和输出
- 10.2 增添属性和有用的接口
- 10.3 本身的缺陷:RandomAccessFile
- 10.4 File类
- 10.5 IO流的典型应用
- 10.6 StreamTokenizer
- 10.7 Java 1.1的IO流
- 10.8 压缩
- 10.9 对象序列化
- 10.10 总结
- 10.11 练习
- 第11章 运行期类型识别
- 11.1 对RTTI的需要
- 11.2 RTTI语法
- 11.3 反射:运行期类信息
- 11.4 总结
- 11.5 练习
- 第12章 传递和返回对象
- 12.1 传递引用
- 12.2 制作本地副本
- 12.3 克隆的控制
- 12.4 只读类
- 12.5 总结
- 12.6 练习
- 第13章 创建窗口和程序片
- 13.1 为何要用AWT?
- 13.2 基本程序片
- 13.3 制作按钮
- 13.4 捕获事件
- 13.5 文本字段
- 13.6 文本区域
- 13.7 标签
- 13.8 复选框
- 13.9 单选钮
- 13.10 下拉列表
- 13.11 列表框
- 13.12 布局的控制
- 13.13 action的替代品
- 13.14 程序片的局限
- 13.15 视窗化应用
- 13.16 新型AWT
- 13.17 Java 1.1用户接口API
- 13.18 可视编程和Beans
- 13.19 Swing入门
- 13.20 总结
- 13.21 练习
- 第14章 多线程
- 14.1 反应灵敏的用户界面
- 14.2 共享有限的资源
- 14.3 堵塞
- 14.4 优先级
- 14.5 回顾runnable
- 14.6 总结
- 14.7 练习
- 第15章 网络编程
- 15.1 机器的标识
- 15.2 套接字
- 15.3 服务多个客户
- 15.4 数据报
- 15.5 一个Web应用
- 15.6 Java与CGI的沟通
- 15.7 用JDBC连接数据库
- 15.8 远程方法
- 15.9 总结
- 15.10 练习
- 第16章 设计模式
- 16.1 模式的概念
- 16.2 观察器模式
- 16.3 模拟垃圾回收站
- 16.4 改进设计
- 16.5 抽象的应用
- 16.6 多重分发
- 16.7 访问器模式
- 16.8 RTTI真的有害吗
- 16.9 总结
- 16.10 练习
- 第17章 项目
- 17.1 文字处理
- 17.2 方法查找工具
- 17.3 复杂性理论
- 17.4 总结
- 17.5 练习
- 附录A 使用非JAVA代码
- 附录B 对比C++和Java
- 附录C Java编程规则
- 附录D 性能
- 附录E 关于垃圾收集的一些话
- 附录F 推荐读物