我们称为**偏差**。由于时钟到每个寄存器的路径延迟不一样,
造成信号到达 **clock pin(时钟引脚)** 的时间也不一样,我们把时钟信号到达不同寄存器的时间偏差称为skew。一直以来,Skew都是衡量时钟树性能的重要参数,传统CTS的目的就是为了减小skew。
Skew的类型分为很多种,根据clock和data path的方向,skew可以分为**positive skew**和**negative skew**。如下图所示:
![](https://img.kancloud.cn/27/3a/273a1e01c1e77600889c1d42eabe1f20_700x391.png)
对于positive skew,clock和data path在相同方向上。反之对negative skew来说,clock和data path在相反方向上。那它们对我们的design有什么影响呢?我们来看一下setup和hold的计算公式:
![](https://img.kancloud.cn/26/b9/26b91d0d57589759f049e1fd4c5a3de1_289x93.png)
我们可以得到以下结果,
> 对于positive skew来说,它可以减少T的时间,相当于提升芯片的performace。但是它的hold时间会变得更加难以满足
> 对于negative skew来说,它的hold时间更加容易满足,取而代之的是,它会降低芯片的性能。
还有另外一种skew的分类方法,是我们更为常见的,根据时钟域以及路径关系, skew 可以分为**global skew**,**local skew**,**interclock skew**。
Global skew 是指,同一时钟域,任意两个路径的最大 skew 。如下图所示,注意是任意两条路径,不管是不是timing path,都会算作gloabl skew计算的对象。CTS时,工具更关注的是global skew, 会尽可能地将global skew做小。
![](https://img.kancloud.cn/b3/3a/b33aca4114bbf18fd3494aef0c8401e5_661x449.png)
Local skew 是指,同一时钟域,任意两个有逻辑关联关系的路径最大 skew 。这边需要注明,必须是存在逻辑关系的path才会计算local skew,也就是说必须要是timing path。如下图所示,我们在分析timing的时候,更多地是关注local skew。
![](https://img.kancloud.cn/c7/a7/c7a7c88e79c53abbae194c91b8f902c7_672x461.png)
interClock skew 是指,不同时钟域之间路径的最大 skew,如下图所示:
![](https://img.kancloud.cn/98/55/9855cd1dd657244fa843671c71340c6c_717x470.png)
另外还有一种比较特使的skew,就是现如今用得较多的useful skew,我们称为**有用偏差**。一般来说,skew会恶化timing结果,但如果合理使用,那skew也可以起到修复timing的作用,从而提高设计的频率。
如下图:时钟周期为 4ns ,各时钟路径延迟如下:可以看到有一条路径的 slack 为 -1ns ,说明这条路径违规。可以看到与这条路径相关的 skew 是 t3-t2= -1ns 。
![](https://img.kancloud.cn/fb/1c/fb1cbf5fd6508d7ed470478fbc4b1389_573x239.png)
下面我们利用 useful skew 向前面一个 slack 比较充裕的路径(slack=2ns)借用1ns的 时间 ,这样两条path都meet了时序要求。如下图:
![](https://img.kancloud.cn/41/cf/41cf4502bb54881ef2919d6f4b7ca2a5_586x217.png)
这就是 usefulskew 的作用,可以向前,或者向后借time来修正 violation。
- 电子元器件
- 电阻
- 电容器
- 电感
- 保险丝
- 二极管
- 三极管
- 接插件
- 蜂鸣器
- MOS
- 集成电器基础知识
- 接地的基础知识
- STA
- Skew
- setup和hold
- 问题
- timing path
- Latency
- 跨时钟域的代码检查(spyglass)
- 时间换算
- 名词解释
- 寄存器
- 触发器
- ECO
- 通用芯片和嵌入式芯片有什么区别
- Signoff
- SOC
- VLSI
- NPU
- DDR
- ISP
- Fan-in 和 Fan-out
- 逻辑阈值
- Floorplan
- 寄存器传输的设计(RTL)
- 集成电路设计方法
- Design Rules of Thumb
- Dealing with Resistance
- 芯片设计
- 什么是Scenario?
- 晶圆BUMP加工工艺和原理
- wafer、die、cell
- DFT
- 前端-QC
- CDC
- SDC
- MBIST
- RDC
- Lint
- overview
- PV
- PBA/GPA
- Corner
- PVT
- latency与delay区别
- Power
- LVT, RVT, HVT 的区别
- PPA
- RTL
- 芯片行业的IP是指什么?
- 晶振与晶体的区别
- PLL (锁相环(PhaseLockedLoop))
- 奇偶分频电路
- inverter
- glitch (电子脉冲)
- Power
- Clock Gating
- 低功耗设计
- UPF
- 低功耗单元库
- Power intent
- 亚稳态
- 芯片流程
- 芯片软件
- 亚稳态&MTBF&同步器&AFIFO
- glitch free的时钟切换技术
- max_transition
- MUX
- STA之RC Corner
- process corner 和 PVT
- ICC Scenario Definition
- 寄生电路?
- 晶振
- 信号完整性
- 什么是脉冲?什么是电平?
- 阈值电压
- bump
- IC设计常用文件及格式介绍
- 文件格式
- spef
- 后端
- phy芯片的作用
- MIPI简介
- 异步桥
- 芯片后仿之SDF
- 慕课-VLSI设计基础(数字集成电路设计基础)
- 概论
- MOS晶体管原理
- 设计与工艺接口
- 反相器和组合逻辑电路
- 问题trainning