MapReduce 优化方法主要以下几个方面考虑:数据输入、Map 阶段、Reduce阶段、IO 传输、数据倾斜问题和常用的调优参数。
[TOC]
# 1. 数据输入
合并小文件:在执行 mr 任务前将小文件进行合并,大量的小文件会产生大量的 map 任务,增大 map 任务装载次数,而任务的装载比较耗时,从而导致mr 运行较慢。
<br/>
# 2. Map 阶段
1. 减少溢写(spill)次数:通过调整 `io.sort.mb` 及 `sort.spill.percent`参数值,增大触发 spill 的内存上限,减少 spill 次数,从而减少磁盘 IO。
2. 减少合并(merge)次数:通过调整 `io.sort.factor` 参数,增大 merge 的文件数目,减少 merge 的次数,从而缩短 mr 处理时间。
3. 在 map 之后,不影响业务逻辑前提下,先进行 combine 处理,减少 I/O。
<br/>
# 3. Reduce 阶段
1. 合理设置 map 和 reduce 数:两个都不能设置太少,也不能设置太多。太少,会导致 task 等待,延长处理时间;太多,会导致 map、reduce 任务间竞争资源,造成处理超时等错误。
2. 设置 map、reduce 共存:调整 `slowstart.completedmaps` 参数,使 map 运行到一定程度后,reduce 也开始运行,减少 reduce 的等待时间。
3. 使用 reduce:因为 reduce 在用于搜集数据集的时候将会产生大量的网络消耗。
4. 合理设置 reduce 端的 buffer:默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后 reduce 会从磁盘中获得所有的数据。也就是说,buffer 和reduce 是没有直接关联的,中间多个一个写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得 buffer 中的一部分数据可以直接输送到reduce,从而减少IO开销:`mapred.job.reduce.input.buffer.percent`,默认为0.0。当值大于0的时候,会保留指定比例的内存读buffer中的数据直接拿给reduce使用。这样一来,设置 buffer 需要内存,读取数据需要内存,reduce 计算也要内存,所以要根据作业的运行情况进行调整。
<br/>
# 4. 数据倾斜问题
1. 数据倾斜现象
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值。
2. 如何收集倾斜数据
在 reduce 方法中加入记录 map 输出键的详细情况的功能。
```java
public static final String MAX_VALUES = "skew.maxvalues";
private int maxValueThreshold;
@Override
public void configure(JobConf job) {
maxValueThreshold = job.getInt(MAX_VALUES, 100);
}
@Override
public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
int i = 0;
while (values.hasNext()) {
values.next();
i++;
}
if (++i > maxValueThreshold) {
log.info("Received " + i + " values for key " + key);
}
}
```
3. 减少数据倾斜的方法
方法 1:抽样和范围分区
可以通过对原始数据进行抽样得到的结果集来预设分区边界值。
方法 2:自定义分区
基于输出键的背景知识进行自定义分区。例如,如果 map 输出键的单词来源于一本书。且其中某几个专业词汇较多。那么就可以自定义分区将这这些专业词汇发送给固定的一部分 reduce 实例。而将其他的都发送给剩余的 reduce 实例。
方法 3:Combine
使用 Combine 可以大量地减小数据倾斜。在可能的情况下,combine 的目的就是提前聚合并精简数据。
方法 4:采用 Map Join,尽量避免 Reduce Join。
<br/>
# 5. 常用的调优参数
1. **资源相关参数**
( 1 )以下参数是在用户自己的 mr 应用程序中配置就可以生效(mapred-default.xml)。
| 配置参数 | 参数说明 |
| --- | --- |
| `mapreduce.map.memory.mb` | 一个 Map Task 可使用的资源上限(单位:MB),默认为 1024。如果 Map Task实际使用的资源量超过该值,则会被强制杀死。 |
| `mapreduce.reduce.memory.mb` | 一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。 |
| `mapreduce.map.cpu.vcores` | 每个 Map task 可使用的最多 cpu core数目,默认值: 1 |
| `mapreduce.reduce.cpu.vcores` | 每个 Reduce task 可使用的最多 cpu core 数目,默认值: 1 |
| `mapreduce.reduce.shuffle.parallelcopies` | 每个 reduce 去 map 中拿数据的并行数。默认值是 5 |
| `mapreduce.reduce.shuffle.merge.percent` | buffer 中的数据达到多少比例开始写入磁盘。默认值 0.66 |
|`mapreduce.reduce.shuffle.input.buffer.percent` | buffer 大小占 reduce 可用内存的比例。默认值 0.7 |
| `mapreduce.reduce.input.buffer.percent` | 指定多少比例的内存用来存放 buffer中的数据,默认值是 0.0 |
( 2 ) 应 该 在 yarn 启 动 之 前 就 配 置 在 服 务 器 的 配 置 文 件 中 才 能 生 效(yarn-default.xml)。
| 配置参数 | 参数说明 |
| --- | --- |
| `yarn.scheduler.minimum-allocation-mb` | 给应用程序 container 分配的最小内存, 默认1024MB |
| `yarn.scheduler.maximum-allocation-mb` | 给应用程序 container 分配的最大内存, 默认8192MB |
| `yarn.scheduler.minimum-allocation-vcores` | 每个 container 申请的最小 CPU 核数, 默认为1 |
| `yarn.scheduler.maximum-allocation-vcores` | 每个 container 申请的最大 CPU 核数, 默认32 |
| `yarn.nodemanager.resource.memory-mb` | 给 containers 分配的最大物理内存, 默认8192MB |
( 3 ) shuffle 性 能 优化 的 关 键 参 数 , 应在 yarn 启动 之 前 就配 置 好(mapred-default.xml)。
| 配置参数 | 参数说明 |
| --- | --- |
| `mapreduce.task.io.sort.mb` | shuffle 的环形缓冲区大小,默认100m |
| `mapreduce.map.sort.spill.percent` | 环形缓冲区溢出的阈值,默认80%,即0.8 |
2. **容错相关参数(mapreduce 性能优化)**
| 配置参数 | 参数说明 |
| --- | --- |
| `mapreduce.map.maxattempts` | 每个 Map Task 最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。 |
| `mapreduce.reduce.maxattempts` | 每个 Reduce Task 最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。 |
| `mapreduce.task.timeout` | Task 超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个 task 在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该 task 处于 block 状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远 block 住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster. |
- Hadoop
- hadoop是什么?
- Hadoop组成
- hadoop官网
- hadoop安装
- hadoop配置
- 本地运行模式配置
- 伪分布运行模式配置
- 完全分布运行模式配置
- HDFS分布式文件系统
- HDFS架构
- HDFS设计思想
- HDFS组成架构
- HDFS文件块大小
- HDFS优缺点
- HDFS Shell操作
- HDFS JavaAPI
- 基本使用
- HDFS的I/O 流操作
- 在SpringBoot项目中的API
- HDFS读写流程
- HDFS写流程
- HDFS读流程
- NN和SNN关系
- NN和SNN工作机制
- Fsimage和 Edits解析
- checkpoint时间设置
- NameNode故障处理
- 集群安全模式
- DataNode工作机制
- 支持的文件格式
- MapReduce分布式计算模型
- MapReduce是什么?
- MapReduce设计思想
- MapReduce优缺点
- MapReduce基本使用
- MapReduce编程规范
- WordCount案例
- MapReduce任务进程
- Hadoop序列化对象
- 为什么要序列化
- 常用数据序列化类型
- 自定义序列化对象
- MapReduce框架原理
- MapReduce工作流程
- MapReduce核心类
- MapTask工作机制
- Shuffle机制
- Partition分区
- Combiner合并
- ReduceTask工作机制
- OutputFormat
- 使用MapReduce实现SQL Join操作
- Reduce join
- Reduce join 代码实现
- Map join
- Map join 案例实操
- MapReduce 开发总结
- Hadoop 优化
- MapReduce 优化需要考虑的点
- MapReduce 优化方法
- 分布式资源调度框架 Yarn
- Yarn 基本架构
- ResourceManager(RM)
- NodeManager(NM)
- ApplicationMaster
- Container
- 作业提交全过程
- JobHistoryServer 使用
- 资源调度器
- 先进先出调度器(FIFO)
- 容量调度器(Capacity Scheduler)
- 公平调度器(Fair Scheduler)
- Yarn 常用命令
- Zookeeper
- zookeeper是什么?
- zookeeper完全分布式搭建
- Zookeeper特点
- Zookeeper数据结构
- Zookeeper 内部原理
- 选举机制
- stat 信息中字段解释
- 选择机制中的概念
- 选举消息内容
- 监听器原理
- Hadoop 高可用集群搭建
- Zookeeper 应用
- Zookeeper Shell操作
- Zookeeper Java应用
- Hive
- Hive是什么?
- Hive的优缺点
- Hive架构
- Hive元数据存储模式
- 内嵌模式
- 本地模式
- 远程模式
- Hive环境搭建
- 伪分布式环境搭建
- Hive命令工具
- 命令行模式
- 交互模式
- Hive数据类型
- Hive数据结构
- 参数配置方式
- Hive数据库
- 数据库存储位置
- 数据库操作
- 表的创建
- 建表基本语法
- 内部表
- 外部表
- 临时表
- 建表高阶语句
- 表的删除与修改
- 分区表
- 静态分区
- 动态分区
- 分桶表
- 创建分桶表
- 分桶抽样
- Hive视图
- 视图的创建
- 侧视图Lateral View
- Hive数据导入导出
- 导入数据
- 导出数据
- 查询表数据量
- Hive事务
- 事务是什么?
- Hive事务的局限性和特点
- Hive事务的开启和设置
- Hive PLSQL
- Hive高阶查询
- 查询基本语法
- 基本查询
- distinct去重
- where语句
- 列正则表达式
- 虚拟列
- CTE查询
- 嵌套查询
- join语句
- 内连接
- 左连接
- 右连接
- 全连接
- 多表连接
- 笛卡尔积
- left semi join
- group by分组
- having刷选
- union与union all
- 排序
- order by
- sort by
- distribute by
- cluster by
- 聚合运算
- 基本聚合
- 高级聚合
- 窗口函数
- 序列窗口函数
- 聚合窗口函数
- 分析窗口函数
- 窗口函数练习
- 窗口子句
- Hive函数
- Hive函数分类
- 字符串函数
- 类型转换函数
- 数学函数
- 日期函数
- 集合函数
- 条件函数
- 聚合函数
- 表生成函数
- 自定义Hive函数
- 自定义函数分类
- 自定义Hive函数流程
- 添加JAR包的方式
- 自定义临时函数
- 自定义永久函数
- Hive优化
- Hive性能调优工具
- EXPLAIN
- ANALYZE
- Fetch抓取
- 本地模式
- 表的优化
- 小表 join 大表
- 大表 join 大表
- 开启Map Join
- group by
- count(distinct)
- 笛卡尔积
- 行列过滤
- 动态分区调整
- 分区分桶表
- 数据倾斜
- 数据倾斜原因
- 调整Map数
- 调整Reduce数
- 产生数据倾斜的场景
- 并行执行
- 严格模式
- JVM重用
- 推测执行
- 启用CBO
- 启动矢量化
- 使用Tez引擎
- 压缩算法和文件格式
- 文件格式
- 压缩算法
- Zeppelin
- Zeppelin是什么?
- Zeppelin安装
- 配置Hive解释器
- Hbase
- Hbase是什么?
- Hbase环境搭建
- Hbase分布式环境搭建
- Hbase伪分布式环境搭建
- Hbase架构
- Hbase架构组件
- Hbase数据存储结构
- Hbase原理
- Hbase Shell
- 基本操作
- 表操作
- namespace
- Hbase Java Api
- Phoenix集成Hbase
- Phoenix是什么?
- 安装Phoenix
- Phoenix数据类型
- Phoenix Shell
- HBase与Hive集成
- HBase与Hive的对比
- HBase与Hive集成使用
- Hbase与Hive集成原理
- HBase优化
- RowKey设计
- 内存优化
- 基础优化
- Hbase管理
- 权限管理
- Region管理
- Region的自动拆分
- Region的预拆分
- 到底采用哪种拆分策略?
- Region的合并
- HFile的合并
- 为什么要有HFile的合并
- HFile合并方式
- Compaction执行时间
- Compaction相关控制参数
- 演示示例
- Sqoop
- Sqoop是什么?
- Sqoop环境搭建
- RDBMS导入到HDFS
- RDBMS导入到Hive
- RDBMS导入到Hbase
- HDFS导出到RDBMS
- 使用sqoop脚本
- Sqoop常用命令
- Hadoop数据模型
- TextFile
- SequenceFile
- Avro
- Parquet
- RC&ORC
- 文件存储格式比较
- Spark
- Spark是什么?
- Spark优势
- Spark与MapReduce比较
- Spark技术栈
- Spark安装
- Spark Shell
- Spark架构
- Spark编程入口
- 编程入口API
- SparkContext
- SparkSession
- Spark的maven依赖
- Spark RDD编程
- Spark核心数据结构-RDD
- RDD 概念
- RDD 特性
- RDD编程
- RDD编程流程
- pom依赖
- 创建算子
- 转换算子
- 动作算子
- 持久化算子
- RDD 与闭包
- csv/json数据源
- Spark分布式计算原理
- RDD依赖
- RDD转换
- RDD依赖
- DAG工作原理
- Spark Shuffle原理
- Shuffle的作用
- ShuffleManager组件
- Shuffle实践
- RDD持久化
- 缓存机制
- 检查点
- 检查点与缓存的区别
- RDD共享变量
- 广播变量
- 累计器
- RDD分区设计
- 数据倾斜
- 数据倾斜的根本原因
- 定位导致的数据倾斜
- 常见数据倾斜解决方案
- Spark SQL
- SQL on Hadoop
- Spark SQL是什么
- Spark SQL特点
- Spark SQL架构
- Spark SQL运行原理
- Spark SQL编程
- Spark SQL编程入口
- 创建Dataset
- Dataset是什么
- SparkSession创建Dataset
- 样例类创建Dataset
- 创建DataFrame
- DataFrame是什么
- 结构化数据文件创建DataFrame
- RDD创建DataFrame
- Hive表创建DataFrame
- JDBC创建DataFrame
- SparkSession创建
- RDD、DataFrame、Dataset
- 三者对比
- 三者相互转换
- RDD转换为DataFrame
- DataFrame转换为RDD
- DataFrame API
- DataFrame API分类
- Action 操作
- 基础 Dataset 函数
- 强类型转换
- 弱类型转换
- Spark SQL外部数据源
- Parquet文件
- Hive表
- RDBMS表
- JSON/CSV
- Spark SQL函数
- Spark SQL内置函数
- 自定SparkSQL函数
- Spark SQL CLI
- Spark SQL性能优化
- Spark GraphX图形数据分析
- 为什么需要图计算
- 图的概念
- 图的术语
- 图的经典表示法
- Spark Graphix简介
- Graphx核心抽象
- Graphx Scala API
- 核心组件
- 属性图应用示例1
- 属性图应用示例2
- 查看图信息
- 图的算子
- 连通分量
- PageRank算法
- Pregel分布式计算框架
- Flume日志收集
- Flume是什么?
- Flume官方文档
- Flume架构
- Flume安装
- Flume使用过程
- Flume组件
- Flume工作流程
- Flume事务
- Source、Channel、Sink文档
- Source文档
- Channel文档
- Sink文档
- Flume拦截器
- Flume拦截器概念
- 配置拦截器
- 自定义拦截器
- Flume可靠性保证
- 故障转移
- 负载均衡
- 多层代理
- 多路复用
- Kafka
- 消息中间件MQ
- Kafka是什么?
- Kafka安装
- Kafka本地单机部署
- Kafka基本命令使用
- Topic的生产与消费
- 基本命令
- 查看kafka目录
- Kafka架构
- Kafka Topic
- Kafka Producer
- Kafka Consumer
- Kafka Partition
- Kafka Message
- Kafka Broker
- 存储策略
- ZooKeeper在Kafka中的作用
- 副本同步
- 容灾
- 高吞吐
- Leader均衡机制
- Kafka Scala API
- Producer API
- Consumer API
- Kafka优化
- 消费者参数优化
- 生产者参数优化
- Spark Streaming
- 什么是流?
- 批处理和流处理
- Spark Streaming简介
- 流数据处理架构
- 内部工作流程
- StreamingContext组件
- SparkStreaming的编程入口
- WordCount案例
- DStream
- DStream是什么?
- Input DStream与Receivers接收器
- DStream API
- 转换操作
- 输出操作
- 数据源
- 数据源分类
- Socket数据源
- 统计HDFS文件的词频
- 处理状态数据
- SparkStreaming整合SparkSQL
- SparkStreaming整合Flume
- SparkStreaming整合Kafka
- 自定义数据源
- Spark Streaming优化策略
- 优化运行时间
- 优化内存使用
- 数据仓库
- 数据仓库是什么?
- 数据仓库的意义
- 数据仓库和数据库的区别
- OLTP和OLAP的区别
- OLTP的特点
- OLAP的特点
- OLTP与OLAP对比
- 数据仓库架构
- Inmon架构
- Kimball架构
- 混合型架构
- 数据仓库的解决方案
- 数据ETL
- 数据仓库建模流程
- 维度模型
- 星型模式
- 雪花模型
- 星座模型
- 数据ETL处理
- 数仓分层术语
- 数据抽取方式
- CDC抽取方案
- 数据转换
- 常见的ETL工具