●▲● **`double round(DOUBLE a)`**
-- 返回数字 a 四舍五入后的值
```sql
select round(1.5) from test; -- 结果为 2
select round(1.1) from test; -- 结果为 1
```
●▲● **`double round(DOUBLE a, INT d)`**
-- 返回数字 a 四舍五入到小数点后 d 位的值
```sql
select round(1.15, 1) from test; -- 结果为 1.2
select round(1.12, 1) from test; -- 结果为 1.1
select round(1.12, 3) from test; -- 结果为 1.12
select round(1.12, 0) from test; -- 结果为 1.0
select round(1.12, -1) from test; -- 结果为 0.0
```
●▲● **`bigint floor(DOUBLE a)`**
-- 对数字 a 向下取整
```sql
select floor(1.1) from test; -- 结果为 1
select floor(1.6) from test; -- 结果为 1
select floor(-1.1) from test; -- 结果为 -2
select floor(-1.6) from test; -- 结果为 -2
```
●▲●
**`bigint ceil(DOUBLE a)`**
**`bigint ceiling(DOUBLE a)`**
-- 对数字 a 向上取整
```sql
select ceil(1.1) from test; -- 结果为 2
select ceil(1.6) from test; -- 结果为 2
select floor(-1.1) from test; -- 结果为 -1
select floor(-1.6) from test; -- 结果为 -1
```
●▲●
**`double pow(DOUBLE a, DOUBLE p)`**
**`double power(DOUBLE a, DOUBLE p)`**
-- 返回 a 的 p 次方
```sql
select pow(-1, 2) from test; -- 结果为 1.0
select pow(0, 1.21) from test; -- 结果为 0.0
select pow(1.1, 2) from test; -- 结果为 1.2100000000000002
```
●▲●
**`double sqrt(DOUBLE a)`**
**`double sqrt(DECIMAL a)`**
-- 返回 a 的 平方根
```sql
select sqrt(4) from test; -- 结果为 2.0
select sqrt(1.21) from test; -- 结果为 1.1
select sqrt(-1) from test; -- 结果为 NULL
```
●▲● **`double abs(DOUBLE a)`**
-- 返回 a 的绝对值
```sql
select abs('-1.024') from test; -- 结果为 1.024
select abs('1.024') from test; -- 结果为 1.024
select abs(1.024) from test; -- 结果为 1.024
```
●▲●`double bround(DOUBLE a)`
-- 返回数字 a 高斯舍入后的值
-- 高斯舍入也称银行家舍入,简单的说就是四舍六入五考虑,五后非空就进一,五后为空看奇偶,五前为偶应舍去,五前为奇要进一
<hr/>
```sql
-- 四舍
select bround(1.4) from test; -- 结果为 1.0
-- 六入
select bround(1.6) from test; -- 结果为 2.0
-- 五后非空就进一
select bround(1.51) from test; -- 结果为 2.0
-- 五前为偶应舍去
select bround(2.5) from test; -- 结果为 2.0
-- 五前为奇要进一
select bround(3.5) from test; -- 结果为 4.0
```
●▲●`double bround(DOUBLE a, INT d)`
-- 返回数字 a 高斯舍入到小数点后 d 位的值
<hr/>
```sql
-- 四舍
select bround(1.14, 1) from test; -- 结果为 1.1
-- 六入
select bround(1.16, 1) from test; -- 结果为 1.2
-- 五后非空就进一
select bround(1.151, 1) from test; -- 结果为 1.2
-- 五前为偶应舍去
select bround(1.25, 1) from test; -- 结果为 1.2
-- 五前为奇要进一
select bround(1.35, 1) from test; -- 结果为 1.4
```
●▲●
`double rand()`
`double rand(INT seed)`
-- 如果 seed 不指定,则返回 0 到 1 之间的随机数
<hr/>
```sql
# 如果 seed 不指定,则返回 0 到 1 之间的随机数
select rand() from test; -- 结果为 0.9811062452094043
# 如果 seed 指定了,随机数是确定的,如:
select rand(2) from test; -- 结果为 0.7311469360199058
select rand(2020) from test; -- 结果为 0.6188119599189963
select rand(20201231) from test; -- 结果为 0.9412005456293369
# 一般使用 Unix 时间戳作为 seed
```
●▲●
`double exp(DOUBLE a)`
`double exp(DECIMAL a)`
-- 返回 e 的 a 次方
<hr/>
```sql
select exp(1) from test; -- 结果为 2.718281828459045
select exp(1.5) from test; -- 结果为 4.4816890703380645
select exp(2) from test; -- 结果为 7.38905609893065
select exp(0) from test; -- 结果为 1.0
select exp(-1) from test; -- 结果为 0.36787944117144233
```
●▲●
`double ln(DOUBLE a)`
`double ln(DECIMAL a)`
-- 返回以 e 为底,a 的对数
<hr/>
```sql
select ln(0) from test; -- 结果为 NULL
select ln(1) from test; -- 结果为 0.0
select ln(2) from test; -- 结果为 0.6931471805599453
select ln(2.718281828459045) from test; -- 结果为 1.0
```
●▲●
`double log10(DOUBLE a)`
`double log10(DECIMAL a)`
-- 返回以 10 为底,a 的对数
<hr/>
```sql
select log10(1) from test; -- 结果为 0.0
select log10(10) from test; -- 结果为 1.0
select log10(0.1) from test; -- 结果为 -1.0
```
●▲●
`double log2(DOUBLE a)`
`double log2(DECIMAL a)`
-- 返回以 2 为底,a 的对数
<hr/>
```sql
select log10(1) from test; -- 结果为 0.0
select log10(10) from test; -- 结果为 1.0
select log10(0.1) from test; -- 结果为 -1.0
```
●▲●
`double log(DOUBLE base, DOUBLE a)`
`double log(DECIMAL base, DECIMAL a)`
-- 返回以 base 为底,a 的对数
<hr/>
```sql
select log(1.1, 1.21) from test; -- 结果为 1.9999999999999982
select log(2, 4) from test; -- 结果为 2.0
select log(3.1, 5) from test; -- 结果为 1.4225162708181491
```
●▲●`string bin(BIGINT a)`
-- 返回 a 的 二进制表达式
<hr/>
```sql
select bin(-1024) from test; -- 结果为
1111111111111111111111111111111111111111111111111111110000000000
select bin(-1) from test; -- 结果为
1111111111111111111111111111111111111111111111111111111111111111
select bin(1) from test; -- 结果为 1
select bin(1024) from test; -- 结果为 10000000000
```
●▲●
`string hex(BIGINT a)`
`string hex(STRING a)`
`string hex(BINARY a)`
-- 如果参数 a 是整数,则返回十六进制表达式
<hr/>
```sql
select hex(16) from test; -- 结果为 10
select bin(-1024) from test; -- 结果为
select bin(-1024) from test; -- 结果为
select bin(-1024) from test; -- 结果为
```
如果参数 a 是字符串,则逐一将字符串中的每个字符对应的 ASCII 码以十六
进制表示并返回,如:
```sql
select hex(16) from test; -- 结果为 10
select hex(11) from test; -- 结果为 B
select hex(-1) from test; -- 结果为 FFFFFFFFFFFFFFFF
```
●▲●`string unhex(STRING a)`
-- hex 的逆函数,以十六进制解释参数 a ,并进行 ASCII 转换,返回对应的字符
<hr/>
```sql
select unhex('41') from test; -- 结果为 A
select unhex('42') from test; -- 结果为 B
select unhex('4242') from test; -- 结果为 BB
```
●▲●
`string conv(BIGINT num, INT from_base, INT to_base)`
`string conv(STRING num, INT from_base, INT to_base)`
-- 将数字 num 或者字符串 num 从 from_base 进制转换到 to_base 进制
<hr/>
```sql
select conv('1024', 10, 2) from test; -- 结果为 10000000000
select conv(1024, 10, 2) from test; -- 结果为 10000000000
select conv(10000000000, 2, 10) from test; -- 结果为 1024
select conv('A', 16, 10) from test; -- 结果为 1
```
●▲●
`int pmod(INT a, INT b)`
`double pmod(DOUBLE a, DOUBLE b)`
-- 返回 a 模 b 的值,pmod(a, b) 同 a % b
<hr/>
```sql
select pmod(10, 3) from test; -- 结果为 1
select 10 % 3 from test; -- 结果为 1
select pmod(10.1, 2.5) from test; -- 结果为 0.09999999999999964
select 10.1 % 2.5 from test; -- 结果为 0.09999999999999964
select pmod(10, 2.5) from test; -- 结果为 0.0
```
●▲●
`double sin(DOUBLE a)`
`double sin(DECIMAL a)`
-- 返回 a 的正弦值(a 以弧度为单位,1 弧度(rad)=57.29578 度(°))
<hr/>
```sql
select sin(1) from test; -- 结果为 0.8414709848078965
select sin(1 / 57.29578 * 90) from test; -- 结果为 0.9999999999999999
```
●▲●
`double asin(DOUBLE a)`
`double asin(DECIMAL a)`
-- 返回 a 的反正弦值( -1<=a<=1)
<hr/>
```sql
select asin(0.8414709848078965) from test; -- 结果为 1.0
select asin(1) * 57.29578 from test; -- 结果为 90.0000007648485
select asin(10) from test; -- 结果为 NaN
```
●▲●
`double cos(DOUBLE a)`
`double cos(DECIMAL a)`
-- 返回 a 的余弦值
<hr/>
```sql
select cos(1) from test; -- 结果为 0.5403023058681398
select cos(1 / 57.29578 * 120) from test; -- 结果为 -0.4999999845857585
```
●▲●
`double acos(DOUBLE a)`
`double acos(DECIMAL a)`
-- 返回 a 的反余弦值
<hr/>
```sql
select acos(0.5403023058681398) from test; -- 结果为 1.0
select acos(0.5) * 57.29578 from test; -- 结果为 60.00000050989901
```
●▲●
`double tan(DOUBLE a)`
`double tan(DECIMAL a)`
-- 返回 a 的正切值
<hr/>
```sql
select tan(1) from test; -- 结果为 1.5574077246549023
select tan(1 / 57.29578 * 45) from test; -- 结果为 0.9999999866508755
```
●▲●
`double atan(DOUBLE a)`
`double atan(DECIMAL a)`
-- 返回 a 的反正切值
<hr/>
```sql
select atan(1.5574077246549023) from test; -- 结果为 1.0
select atan(1) * 57.29578 from test; -- 结果为 45.00000038242425
```
●▲●
`double degrees(DOUBLE a)`
`double degrees(DECIMAL a)`
-- 弧度(rad)转为度(°):1 弧度(rad)=57.29577951308232 度(°)
<hr/>
```sql
select degrees(1) from test; -- 结果为 57.29577951308232
```
●▲●
`double radians(DOUBLE a)`
`double radians(DOUBLE a)`
-- 度(°)转为弧度(rad)
<hr/>
```sql
select radians(57.29577951308232) from test; -- 结果为 1.0
select radians(90) from test; -- 结果为 1.5707963267948966
```
●▲●
`int positive(INT a)`
`double positive(DOUBLE a)`
-- 返回 a
<hr/>
```sql
select positive(1) from test; -- 结果为 1
select positive(-1) from test; -- 结果为 -1
select positive(1.024) from test; -- 结果为 1.024
```
●▲●
`int negative(INT a)`
`double negative(DOUBLE a)`
-- 返回 -a
<hr/>
```sql
select negative(1) from test; -- 结果为 -1
select negative(-1) from test; -- 结果为 1
select negative(1.024) from test; -- 结果为 -1.024
```
●▲●
`double sign(DOUBLE a)`
`int sign(DECIMAL a)`
-- 如果 a 是正数,返回 1.0;如果 a 是负数,返回 -1.0;如果 a 是 0,返回 0.0
<hr/>
```sql
select sign(2) from test; -- 结果为 1.0
select sign(-2) from test; -- 结果为 -1.0
select sign(0) from test; -- 结果为 0.0
select sign(0) from test; -- 结果为 0.0
```
●▲●`double e()`
- 返回自然常数 e 的值
<hr/>
```sql
select e() from test; -- 结果为 2.718281828459045
```
●▲●`double pi()`
-- 返回圆周率 π 的值
<hr/>
```sql
select pi() from test; -- 结果为 3.141592653589793
```
●▲●`bigint factorial(INT a)`
-- 返回 a 的阶乘(n!=1×2×3×...×(n-1)×n)
<hr/>
```sql
select factorial(3) from test; -- 结果为 6
select factorial(4) from test; -- 结果为 24
```
●▲●`double cbrt(DOUBLE a)`
-- 返回 a 的立方根
<hr/>
```sql
select cbrt(8) from test; -- 结果为 2.0
select cbrt(1.331) from test; -- 结果为 1.1
```
●▲●`T greatest(T v1, T v2, ...)`
-- 返回最大值(如果列表中有一个值为 NULL,则返回 NULL)
<hr/>
```sql
select greatest(2, 3) from test; -- 结果为 3
select greatest('11', '12', '9') from test; -- 结果为 9
select greatest(NULL, 1, 2) from test; -- 结果为 NULL
```
●▲●`T least(T v1, T v2, ...)`
-- 返回最小值(如果列表中有一个值为 NULL,则返回 NULL)
<hr/>
```sql
select least(2, 3) from test; -- 结果为 2
select least('11', '12', '9') from test; -- 结果为 11
select least(NULL, 1, 2) from test; -- 结果为 NULL
```
●▲●
```sql
int width_bucket(NUMERIC expr, NUMERIC min_value, NUMERIC
max_value, INT num_buckets)
```
-- 返回一个介于 0 和 num_buckets + 1 之间的整数(基于通过将[min_value,max_value]划分为大小相等的区域来生成存储桶);
如果 expr 小于 min_value 则返回 1,如果 expr 大于 max_value 则返回num_buckets + 1
<hr/>
```sql
select width_bucket(2, 1, 10, 5) from test; -- 结果为 1
select width_bucket(1, 2, 11, 5) from test; -- 结果为 1
select width_bucket(11, 1, 10, 5) from test; -- 结果为 6
```
- Hadoop
- hadoop是什么?
- Hadoop组成
- hadoop官网
- hadoop安装
- hadoop配置
- 本地运行模式配置
- 伪分布运行模式配置
- 完全分布运行模式配置
- HDFS分布式文件系统
- HDFS架构
- HDFS设计思想
- HDFS组成架构
- HDFS文件块大小
- HDFS优缺点
- HDFS Shell操作
- HDFS JavaAPI
- 基本使用
- HDFS的I/O 流操作
- 在SpringBoot项目中的API
- HDFS读写流程
- HDFS写流程
- HDFS读流程
- NN和SNN关系
- NN和SNN工作机制
- Fsimage和 Edits解析
- checkpoint时间设置
- NameNode故障处理
- 集群安全模式
- DataNode工作机制
- 支持的文件格式
- MapReduce分布式计算模型
- MapReduce是什么?
- MapReduce设计思想
- MapReduce优缺点
- MapReduce基本使用
- MapReduce编程规范
- WordCount案例
- MapReduce任务进程
- Hadoop序列化对象
- 为什么要序列化
- 常用数据序列化类型
- 自定义序列化对象
- MapReduce框架原理
- MapReduce工作流程
- MapReduce核心类
- MapTask工作机制
- Shuffle机制
- Partition分区
- Combiner合并
- ReduceTask工作机制
- OutputFormat
- 使用MapReduce实现SQL Join操作
- Reduce join
- Reduce join 代码实现
- Map join
- Map join 案例实操
- MapReduce 开发总结
- Hadoop 优化
- MapReduce 优化需要考虑的点
- MapReduce 优化方法
- 分布式资源调度框架 Yarn
- Yarn 基本架构
- ResourceManager(RM)
- NodeManager(NM)
- ApplicationMaster
- Container
- 作业提交全过程
- JobHistoryServer 使用
- 资源调度器
- 先进先出调度器(FIFO)
- 容量调度器(Capacity Scheduler)
- 公平调度器(Fair Scheduler)
- Yarn 常用命令
- Zookeeper
- zookeeper是什么?
- zookeeper完全分布式搭建
- Zookeeper特点
- Zookeeper数据结构
- Zookeeper 内部原理
- 选举机制
- stat 信息中字段解释
- 选择机制中的概念
- 选举消息内容
- 监听器原理
- Hadoop 高可用集群搭建
- Zookeeper 应用
- Zookeeper Shell操作
- Zookeeper Java应用
- Hive
- Hive是什么?
- Hive的优缺点
- Hive架构
- Hive元数据存储模式
- 内嵌模式
- 本地模式
- 远程模式
- Hive环境搭建
- 伪分布式环境搭建
- Hive命令工具
- 命令行模式
- 交互模式
- Hive数据类型
- Hive数据结构
- 参数配置方式
- Hive数据库
- 数据库存储位置
- 数据库操作
- 表的创建
- 建表基本语法
- 内部表
- 外部表
- 临时表
- 建表高阶语句
- 表的删除与修改
- 分区表
- 静态分区
- 动态分区
- 分桶表
- 创建分桶表
- 分桶抽样
- Hive视图
- 视图的创建
- 侧视图Lateral View
- Hive数据导入导出
- 导入数据
- 导出数据
- 查询表数据量
- Hive事务
- 事务是什么?
- Hive事务的局限性和特点
- Hive事务的开启和设置
- Hive PLSQL
- Hive高阶查询
- 查询基本语法
- 基本查询
- distinct去重
- where语句
- 列正则表达式
- 虚拟列
- CTE查询
- 嵌套查询
- join语句
- 内连接
- 左连接
- 右连接
- 全连接
- 多表连接
- 笛卡尔积
- left semi join
- group by分组
- having刷选
- union与union all
- 排序
- order by
- sort by
- distribute by
- cluster by
- 聚合运算
- 基本聚合
- 高级聚合
- 窗口函数
- 序列窗口函数
- 聚合窗口函数
- 分析窗口函数
- 窗口函数练习
- 窗口子句
- Hive函数
- Hive函数分类
- 字符串函数
- 类型转换函数
- 数学函数
- 日期函数
- 集合函数
- 条件函数
- 聚合函数
- 表生成函数
- 自定义Hive函数
- 自定义函数分类
- 自定义Hive函数流程
- 添加JAR包的方式
- 自定义临时函数
- 自定义永久函数
- Hive优化
- Hive性能调优工具
- EXPLAIN
- ANALYZE
- Fetch抓取
- 本地模式
- 表的优化
- 小表 join 大表
- 大表 join 大表
- 开启Map Join
- group by
- count(distinct)
- 笛卡尔积
- 行列过滤
- 动态分区调整
- 分区分桶表
- 数据倾斜
- 数据倾斜原因
- 调整Map数
- 调整Reduce数
- 产生数据倾斜的场景
- 并行执行
- 严格模式
- JVM重用
- 推测执行
- 启用CBO
- 启动矢量化
- 使用Tez引擎
- 压缩算法和文件格式
- 文件格式
- 压缩算法
- Zeppelin
- Zeppelin是什么?
- Zeppelin安装
- 配置Hive解释器
- Hbase
- Hbase是什么?
- Hbase环境搭建
- Hbase分布式环境搭建
- Hbase伪分布式环境搭建
- Hbase架构
- Hbase架构组件
- Hbase数据存储结构
- Hbase原理
- Hbase Shell
- 基本操作
- 表操作
- namespace
- Hbase Java Api
- Phoenix集成Hbase
- Phoenix是什么?
- 安装Phoenix
- Phoenix数据类型
- Phoenix Shell
- HBase与Hive集成
- HBase与Hive的对比
- HBase与Hive集成使用
- Hbase与Hive集成原理
- HBase优化
- RowKey设计
- 内存优化
- 基础优化
- Hbase管理
- 权限管理
- Region管理
- Region的自动拆分
- Region的预拆分
- 到底采用哪种拆分策略?
- Region的合并
- HFile的合并
- 为什么要有HFile的合并
- HFile合并方式
- Compaction执行时间
- Compaction相关控制参数
- 演示示例
- Sqoop
- Sqoop是什么?
- Sqoop环境搭建
- RDBMS导入到HDFS
- RDBMS导入到Hive
- RDBMS导入到Hbase
- HDFS导出到RDBMS
- 使用sqoop脚本
- Sqoop常用命令
- Hadoop数据模型
- TextFile
- SequenceFile
- Avro
- Parquet
- RC&ORC
- 文件存储格式比较
- Spark
- Spark是什么?
- Spark优势
- Spark与MapReduce比较
- Spark技术栈
- Spark安装
- Spark Shell
- Spark架构
- Spark编程入口
- 编程入口API
- SparkContext
- SparkSession
- Spark的maven依赖
- Spark RDD编程
- Spark核心数据结构-RDD
- RDD 概念
- RDD 特性
- RDD编程
- RDD编程流程
- pom依赖
- 创建算子
- 转换算子
- 动作算子
- 持久化算子
- RDD 与闭包
- csv/json数据源
- Spark分布式计算原理
- RDD依赖
- RDD转换
- RDD依赖
- DAG工作原理
- Spark Shuffle原理
- Shuffle的作用
- ShuffleManager组件
- Shuffle实践
- RDD持久化
- 缓存机制
- 检查点
- 检查点与缓存的区别
- RDD共享变量
- 广播变量
- 累计器
- RDD分区设计
- 数据倾斜
- 数据倾斜的根本原因
- 定位导致的数据倾斜
- 常见数据倾斜解决方案
- Spark SQL
- SQL on Hadoop
- Spark SQL是什么
- Spark SQL特点
- Spark SQL架构
- Spark SQL运行原理
- Spark SQL编程
- Spark SQL编程入口
- 创建Dataset
- Dataset是什么
- SparkSession创建Dataset
- 样例类创建Dataset
- 创建DataFrame
- DataFrame是什么
- 结构化数据文件创建DataFrame
- RDD创建DataFrame
- Hive表创建DataFrame
- JDBC创建DataFrame
- SparkSession创建
- RDD、DataFrame、Dataset
- 三者对比
- 三者相互转换
- RDD转换为DataFrame
- DataFrame转换为RDD
- DataFrame API
- DataFrame API分类
- Action 操作
- 基础 Dataset 函数
- 强类型转换
- 弱类型转换
- Spark SQL外部数据源
- Parquet文件
- Hive表
- RDBMS表
- JSON/CSV
- Spark SQL函数
- Spark SQL内置函数
- 自定SparkSQL函数
- Spark SQL CLI
- Spark SQL性能优化
- Spark GraphX图形数据分析
- 为什么需要图计算
- 图的概念
- 图的术语
- 图的经典表示法
- Spark Graphix简介
- Graphx核心抽象
- Graphx Scala API
- 核心组件
- 属性图应用示例1
- 属性图应用示例2
- 查看图信息
- 图的算子
- 连通分量
- PageRank算法
- Pregel分布式计算框架
- Flume日志收集
- Flume是什么?
- Flume官方文档
- Flume架构
- Flume安装
- Flume使用过程
- Flume组件
- Flume工作流程
- Flume事务
- Source、Channel、Sink文档
- Source文档
- Channel文档
- Sink文档
- Flume拦截器
- Flume拦截器概念
- 配置拦截器
- 自定义拦截器
- Flume可靠性保证
- 故障转移
- 负载均衡
- 多层代理
- 多路复用
- Kafka
- 消息中间件MQ
- Kafka是什么?
- Kafka安装
- Kafka本地单机部署
- Kafka基本命令使用
- Topic的生产与消费
- 基本命令
- 查看kafka目录
- Kafka架构
- Kafka Topic
- Kafka Producer
- Kafka Consumer
- Kafka Partition
- Kafka Message
- Kafka Broker
- 存储策略
- ZooKeeper在Kafka中的作用
- 副本同步
- 容灾
- 高吞吐
- Leader均衡机制
- Kafka Scala API
- Producer API
- Consumer API
- Kafka优化
- 消费者参数优化
- 生产者参数优化
- Spark Streaming
- 什么是流?
- 批处理和流处理
- Spark Streaming简介
- 流数据处理架构
- 内部工作流程
- StreamingContext组件
- SparkStreaming的编程入口
- WordCount案例
- DStream
- DStream是什么?
- Input DStream与Receivers接收器
- DStream API
- 转换操作
- 输出操作
- 数据源
- 数据源分类
- Socket数据源
- 统计HDFS文件的词频
- 处理状态数据
- SparkStreaming整合SparkSQL
- SparkStreaming整合Flume
- SparkStreaming整合Kafka
- 自定义数据源
- Spark Streaming优化策略
- 优化运行时间
- 优化内存使用
- 数据仓库
- 数据仓库是什么?
- 数据仓库的意义
- 数据仓库和数据库的区别
- OLTP和OLAP的区别
- OLTP的特点
- OLAP的特点
- OLTP与OLAP对比
- 数据仓库架构
- Inmon架构
- Kimball架构
- 混合型架构
- 数据仓库的解决方案
- 数据ETL
- 数据仓库建模流程
- 维度模型
- 星型模式
- 雪花模型
- 星座模型
- 数据ETL处理
- 数仓分层术语
- 数据抽取方式
- CDC抽取方案
- 数据转换
- 常见的ETL工具