第14章 中介者模式
14.1 进销存管理是这个样子的吗
大家都来自五湖四海,都要生存,于是都找了个靠山——公司,就是给你发薪水的地方。公司要想尽办法赢利赚钱,赢利方法则不尽相同,但是各个公司都有相同的三个环节:采购、销售和库存。这个怎么说呢?比如一个软件公司,要开发软件,就需要购买开发环境,如Windows操作系统、数据库产品等,这就是采购;开发完产品还要把产品推销出去;有产品就必然有库存,软件产品也有库存,虽然不需要占用库房空间,但也要占用光盘或硬盘,这也是库存。再比如做咨询服务的公司,它要采购什么?采购知识,采购经验,这是这类企业的生存之本,销售的也是知识和经验,库存同样是知识和经验。既然进销存是如此重要,我们今天就来讲讲它的原理和设计,我相信很多人都已经开发过这种类型的软件,基本上都形成了固定套路,不管是单机版还是网络版,一般的做法都是通过数据库来完成相关产品的管理,相对来说这还是比较简单的项目,三个模块的示意图如图14-1所示。
![](https://box.kancloud.cn/2016-08-14_57b00363819d3.jpg)
图14-1 进销存示意图
我们从这个示意图上可以看出,三个模块是相互依赖的。我们就以一个终端销售商(以服务最终客户为目标的企业,比如某某超市、某某商店等)为例,采购部门要采购IBM的电脑,它根据以下两个要素来决定采购数量。
● 销售情况
销售部门要反馈销售情况,畅销就多采购,滞销就不采购。
● 库存情况
即使是畅销产品,库存都有1000台了,每天才卖出去10台,也就不需要再采购了!
销售模块是企业的赢利核心,对其他两个模块也有影响:
● 库存情况
库房有货,才能销售,空手套白狼是不行的。
● 督促采购
在特殊情况下,比如一个企业客户要一次性购买100台电脑,库存只有80台,这时需要催促采购部门赶快采购!
同样地,库存管理也对其他两个模块有影响。库房是有容积限制的,不可能无限大,所以就有了清仓处理,那就要求采购部门停止采购,同时销售部门进行打折销售。
从以上分析来看,这三个模块都有自己的行为,并且与其他模块之间的行为产生关联,类似于我们办公室的同事,大家各干各的活,但是彼此之间还是有交叉的,于是彼此之间就产生紧耦合,也就是一个团队。我们先来实现这个进销存,类图如图14-2所示。
![](https://box.kancloud.cn/2016-08-14_57b0036396919.jpg)
图14-2 简单的进销存类图
Purchase负责采购管理,buyIBMComputer指定了采购IBM电脑,refuseBuyIBM是指不再采购IBM了,源代码如代码清单14-1所示。
代码清单14-1 采购管理
public class Purchase {
//采购IBM电脑
public void buyIBMcomputer(int number){
//访问库存
Stock stock = new Stock();
//访问销售
Sale sale = new Sale();
//电脑的销售情况
int saleStatus = sale.getSaleStatus();
if(saleStatus>80){ //销售情况良好
System.out.println("采购IBM电脑:"+number + "台");
stock.increase(number);
}else{ //销售情况不好
int buyNumber = number/2; //折半采购
System.out.println("采购IBM电脑:"+buyNumber+ "台");
}
}
//不再采购IBM电脑
public void refuseBuyIBM(){
System.out.println("不再采购IBM电脑");
}
}
Purchase定义了采购电脑的标准:如果销售情况比较好,大于80分,你让我采购多少我就采购多少;销售情况不好,你让我采购100台,我就采购50台,对折采购。电脑采购完毕,需要放到库房中,因此要调用库存的方法,增加库存电脑数量。我们继续来看库房Stock类,如代码清单14-2所示。
代码清单14-2 库存管理
public class Stock {
//刚开始有100台电脑
private static int COMPUTER_NUMBER =100;
//库存增加
public void increase(int number){
COMPUTER_NUMBER = COMPUTER_NUMBER + number;
System.out.println("库存数量为:"+COMPUTER_NUMBER);
}
//库存降低
public void decrease(int number){
COMPUTER_NUMBER = COMPUTER_NUMBER - number;
System.out.println("库存数量为:"+COMPUTER_NUMBER);
}
//获得库存数量
public int getStockNumber(){
return COMPUTER_NUMBER;
}
//存货压力大了,就要通知采购人员不要采购,销售人员要尽快销售
public void clearStock(){
Purchase purchase = new Purchase();
Sale sale = new Sale();
System.out.println("清理存货数量为:"+COMPUTER_NUMBER);
//要求折价销售
sale.offSale();
//要求采购人员不要采购
purchase.refuseBuyIBM();
}
}
库房中的货物数量肯定有增减,同时库房还有一个容量显示,达到一定的容量后就要求对一些商品进行折价处理,以腾出更多的空间容纳新产品。于是就有了clearStock方法,既然是清仓处理肯定就要折价销售了。于是在Sale类中就有了offSale方法,我们来看Sale源代码,如代码清单14-3所示。
代码清单14-3 销售管理
public class Sale {
//销售IBM电脑
public void sellIBMComputer(int number){
//访问库存
Stock stock = new Stock();
//访问采购
Purchase purchase = new Purchase();
if(stock.getStockNumber()<number){ //库存数量不够销售
purchase.buyIBMcomputer(number);
}
System.out.println("销售IBM电脑"+number+"台");
stock.decrease(number);
}
//反馈销售情况,0~100之间变化,0代表根本就没人卖,100代表非常畅销,出一个卖一个
public int getSaleStatus(){
Random rand = new Random(System.currentTimeMillis());
int saleStatus = rand.nextInt(100);
System.out.println("IBM电脑的销售情况为:"+saleStatus);
return saleStatus;
}
//折价处理
public void offSale(){
//库房有多少卖多少
Stock stock = new Stock();
System.out.println("折价销售IBM电脑"+stock.getStockNumber()+"台");
}
}
Sale类中的getSaleStatus是获得销售情况,这个当然要出现在Sale类中了。记住要把恰当的类放到恰当的类中,销售情况只有销售人员才能反馈出来,通过百分制的机制衡量销售情况。我们再来看场景类是怎么运行的,场景类如代码清单14-4所示。
代码清单14-4 场景类
public class Client {
public static void main(String[] args) {
//采购人员采购电脑
System.out.println("------采购人员采购电脑--------");
Purchase purchase = new Purchase();
purchase.buyIBMcomputer(100);
//销售人员销售电脑
System.out.println("\n------销售人员销售电脑--------");
Sale sale = new Sale();
sale.sellIBMComputer(1);
//库房管理人员管理库存
System.out.println("\n------库房管理人员清库处理--------");
Stock stock = new Stock();
stock.clearStock();
}
}
我们在场景类中模拟了三种人员的活动:采购人员采购电脑,销售人员销售电脑,库管员管理库存。运行结果如下所示:
------采购人员采购电脑--------
IBM电脑的销售情况为:95
采购IBM电脑:100台
库存数量为:200
------销售人员销售电脑--------
销售IBM电脑1台
库存数量为:199
------库房管理人员清库处理--------
清理存货数量为:199
折价销售IBM电脑199台
不再采购IBM电脑
运行结果也是我们期望的,三个不同类型的参与者完成了各自的活动。你有没有发现这三个类是彼此关联的?每个类都与其他两个类产生了关联关系。迪米特法则认为“每个类只和朋友类交流”,这个朋友类并非越多越好,朋友类越多,耦合性越大,要想修改一个就得修改一片,这不是面向对象设计所期望的,况且这还是仅三个模块的情况,属于比较简单的一个小项目。我们把进销存扩展一下,如图14-3所示。
![](https://box.kancloud.cn/2016-08-14_57b00363b0b46.jpg)
图14-3 扩展后的进销存示意图
这是一个蜘蛛网的结构,别说是编写程序了,就是给人看估计也能让一大批人昏倒!每个对象都需要和其他几个对象交流,对象越多,每个对象要交流的成本也就越大了,只是维护这些对象的交流就能让一大批程序员望而却步!从这方面来说,我们已经发现设计的缺陷了,作为一个架构师,发现缺陷就要想办法修改。
大家都学过网络的基本知识,网络拓扑有三种类型:总线型、环型、星型。星型网络拓扑如图14-4所示。
在星型网络拓扑中,每个计算机通过交换机和其他计算机进行数据交换,各个计算机之间并没有直接出现交互的情况。这种结构简单,而且稳定,只要中间那个交换机不瘫痪,整个网络就不会发生大的故障。公司和网吧一般都采用星型网络。我们是不是可以把这种星型结构引入到我们的设计中呢?我们先画一个示意图,如图14-5所示。
![](https://box.kancloud.cn/2016-08-14_57b00363c7089.jpg)
图14-4 星型网络拓扑
![](https://box.kancloud.cn/2016-08-14_57b00363db24f.jpg)
图14-5 修改后的进销存示意图
加入了一个中介者作为三个模块的交流核心,每个模块之间不再相互交流,要交流就通过中介者进行。每个模块只负责自己的业务逻辑,不属于自己的则丢给中介者来处理,简化了各模块之间的耦合关系,类图如图14-6所示。
![](https://box.kancloud.cn/2016-08-14_57b00363f00e4.jpg)
图14-6 修改后的进销存类图
建立了两个抽象类AbstractMediator和AbstractColeague,每个对象只是与中介者Mediator之间产生依赖,与其他对象之间没有直接关系,AbstractMediator的作用是实现中介者的抽象定义,定义了一个抽象方法execute,如代码清单14-5所示。
代码清单14-5 抽象中介者
public abstract class AbstractMediator {
protected Purchase purchase;
protected Sale sale;
protected Stock stock;
//构造函数
public AbstractMediator(){
purchase = new Purchase(this);
sale = new Sale(this);
stock = new Stock(this);
}
//中介者最重要的方法叫做事件方法,处理多个对象之间的关系
public abstract void execute(String str,Object...objects);
}
再来看具体的中介者,我们可以根据业务的要求产生多个中介者,并划分各中介者的职责。具体中介者如代码清单14-6所示。
代码清单14-6 具体中介者
public class Mediator extends AbstractMediator {
//中介者最重要的方法
public void execute(String str,Object...objects){
if(str.equals("purchase.buy")){ //采购电脑
this.buyComputer((Integer)objects[0]);
}else if(str.equals("sale.sell")){ //销售电脑
this.sellComputer((Integer)objects[0]);
}else if(str.equals("sale.offsell")){ //折价销售
this.offSell();
}else if(str.equals("stock.clear")){ //清仓处理
this.clearStock();
}
}
//采购电脑
private void buyComputer(int number){
int saleStatus = super.sale.getSaleStatus();
if(saleStatus>80){ //销售情况良好
System.out.println("采购IBM电脑:"+number + "台");
super.stock.increase(number);
}else{ //销售情况不好
int buyNumber = number/2; //折半采购
System.out.println("采购IBM电脑:"+buyNumber+ "台");
}
}
//销售电脑
private void sellComputer(int number){
if(super.stock.getStockNumber()<number){ //库存数量不够销售
super.purchase.buyIBMcomputer(number);
}
super.stock.decrease(number);
}
//折价销售电脑
private void offSell(){
System.out.println("折价销售IBM电脑"+stock.getStockNumber()+"台");
}
//清仓处理
private void clearStock(){
//要求清仓销售
super.sale.offSale();
//要求采购人员不要采购
super.purchase.refuseBuyIBM();
}
}
中介者Mediator定义了多个private方法,其目的是处理各个对象之间的依赖关系,就是说把原有一个对象要依赖多个对象的情况移到中介者的private方法中实现。在实际项目中,一般的做法是中介者按照职责进行划分,每个中介者处理一个或多个类似的关联请求。
由于要使用中介者,我们增加了一个抽象同事类,三个具体的实现类分别继承该抽象类,如代码清单14-7所示。
代码清单14-7 抽象同事类
public abstract class AbstractColleague {
protected AbstractMediator mediator;
public AbstractColleague(AbstractMediator _mediator){
this.mediator = _mediator;
}
}
采购Purchase类如代码清单14-8所示。
代码清单14-8 修改后的采购管理
public class Purchase extends AbstractColleague{
public Purchase(AbstractMediator _mediator){
super(_mediator);
}
//采购IBM电脑
public void buyIBMcomputer(int number){
super.mediator.execute("purchase.buy", number);
}
//不再采购IBM电脑
public void refuseBuyIBM(){
System.out.println("不再采购IBM电脑");
}
}
上述Purchase类简化了很多,也清晰了很多,处理自己的职责,与外界有关系的事件处理则交给了中介者来完成。再来看Stock类,如代码清单14-9所示。
代码清单14-9 修改后的库存管理
public class Stock extends AbstractColleague {
public Stock(AbstractMediator _mediator){
super(_mediator);
}
//刚开始有100台电脑
private static int COMPUTER_NUMBER =100;
//库存增加
public void increase(int number){
COMPUTER_NUMBER = COMPUTER_NUMBER + number;
System.out.println("库存数量为:"+COMPUTER_NUMBER);
}
//库存降低
public void decrease(int number){
COMPUTER_NUMBER = COMPUTER_NUMBER - number;
System.out.println("库存数量为:"+COMPUTER_NUMBER);
}
//获得库存数量
public int getStockNumber(){
return COMPUTER_NUMBER;
}
//存货压力大了,就要通知采购人员不要采购,销售人员要尽快销售
public void clearStock(){
System.out.println("清理存货数量为:"+COMPUTER_NUMBER);
super.mediator.execute("stock.clear");
}
}
销售管理Sale类如代码清单14-10所示。
代码清单14-10 修改后的销售管理
public class Sale extends AbstractColleague {
public Sale(AbstractMediator _mediator){
super(_mediator);
}
//销售IBM电脑
public void sellIBMComputer(int number){
super.mediator.execute("sale.sell", number);
System.out.println("销售IBM电脑"+number+"台");
}
//反馈销售情况,0~100变化,0代表根本就没人买,100代表非常畅销,出一个卖一个
public int getSaleStatus(){
Random rand = new Random(System.currentTimeMillis());
int saleStatus = rand.nextInt(100);
System.out.println("IBM电脑的销售情况为:"+saleStatus);
return saleStatus;
}
//折价处理
public void offSale(){
super.mediator.execute("sale.offsell");
}
}
增加了中介者,场景类也需要小小的改动,如代码清单14-11所示。
代码清单14-11 修改后的场景类
public class Client {
public static void main(String[] args) {
AbstractMediator mediator = new Mediator();
//采购人员采购电脑
System.out.println("------采购人员采购电脑--------");
Purchase purchase = new Purchase(mediator);
purchase.buyIBMcomputer(100);
//销售人员销售电脑
System.out.println("\n------销售人员销售电脑--------");
Sale sale = new Sale(mediator);
sale.sellIBMComputer(1);
//库房管理人员管理库存
System.out.println("\n------库房管理人员清库处理--------");
Stock stock = new Stock(mediator);
stock.clearStock();
}
}
在场景类中增加了一个中介者,然后分别传递到三个同事类中,三个类都具有相同的特性:只负责处理自己的活动(行为),与自己无关的活动就丢给中介者处理,程序运行的结果是相同的。从项目设计上来看,加入了中介者,设计结构清晰了很多,而且类间的耦合性大大减少,代码质量也有了很大的提升。
在多个对象依赖的情况下,通过加入中介者角色,取消了多个对象的关联或依赖关系,减少了对象的耦合性。
- 前言
- 第一部分 大旗不挥,谁敢冲锋——6大设计原则全新解读
- 第1章 单一职责原则
- 1.2 绝杀技,打破你的传统思维
- 1.3 我单纯,所以我快乐
- 1.4 最佳实践
- 第2章 里氏替换原则
- 2.2 纠纷不断,规则压制
- 2.3 最佳实践
- 第3章 依赖倒置原则
- 3.2 言而无信,你太需要契约
- 3.3 依赖的三种写法
- 3.4 最佳实践
- 第4章 接口隔离原则
- 4.2 美女何其多,观点各不同
- 4.3 保证接口的纯洁性
- 4.4 最佳实践
- 第5章 迪米特法则
- 5.2 我的知识你知道得越少越好
- 5.3 最佳实践
- 第6章 开闭原则
- 6.2 开闭原则的庐山真面目
- 6.3 为什么要采用开闭原则
- 6.4 如何使用开闭原则
- 6.5 最佳实践
- 第二部分 真刀实枪 ——23种设计模式完美演绎
- 第7章 单例模式
- 7.2 单例模式的定义
- 7.3 单例模式的应用
- 7.4 单例模式的扩展
- 7.5 最佳实践
- 第8章 工厂方法模式
- 8.2 工厂方法模式的定义
- 8.3 工厂方法模式的应用
- 8.4 工厂方法模式的扩展
- 8.5 最佳实践
- 第9章 抽象工厂模式
- 9.2 抽象工厂模式的定义
- 9.3 抽象工厂模式的应用
- 9.4 最佳实践
- 第10章 模板方法模式
- 10.2 模板方法模式的定义
- 10.3 模板方法模式的应用
- 10.4 模板方法模式的扩展
- 10.5 最佳实践
- 第11章 建造者模式
- 11.2 建造者模式的定义
- 11.3 建造者模式的应用
- 11.4 建造者模式的扩展
- 11.5 最佳实践
- 第12章 代理模式
- 12.2 代理模式的定义
- 12.3 代理模式的应用
- 12.4 代理模式的扩展
- 12.5 最佳实践
- 第13章 原型模式
- 13.2 原型模式的定义
- 13.3 原型模式的应用
- 13.4 原型模式的注意事项
- 13.5 最佳实践
- 第14章 中介者模式
- 14.2 中介者模式的定义
- 14.3 中介者模式的应用
- 14.4 中介者模式的实际应用
- 14.5 最佳实践
- 第15章 命令模式
- 15.2 命令模式的定义
- 15.3 命令模式的应用
- 15.4 命令模式的扩展
- 15.5 最佳实践
- 第16章 责任链模式
- 16.2 责任链模式的定义
- 16.3 责任链模式的应用
- 16.4 最佳实践
- 第17章 装饰模式
- 17.2 装饰模式的定义
- 17.3 装饰模式应用
- 17.4 最佳实践
- 第18章 策略模式
- 18.2 策略模式的定义
- 18.3 策略模式的应用
- 18.4 策略模式的扩展
- 18.5 最佳实践
- 第19章 适配器模式
- 19.2 适配器模式的定义
- 19.3 适配器模式的应用
- 19.4 适配器模式的扩展
- 19.5 最佳实践
- 第20章 迭代器模式
- 20.2 迭代器模式的定义
- 20.3 迭代器模式的应用
- 20.4 最佳实践
- 第21章 组合模式
- 21.2 组合模式的定义
- 21.3 组合模式的应用
- 21.4 组合模式的扩展
- 21.5 最佳实践
- 第22章 观察者模式
- 22.2 观察者模式的定义
- 22.3 观察者模式的应用
- 22.4 观察者模式的扩展
- 22.5 最佳实践
- 第23章 门面模式
- 23.2 门面模式的定义
- 23.3 门面模式的应用
- 23.4 门面模式的注意事项
- 23.5 最佳实践
- 第24章 备忘录模式
- 24.2 备忘录模式的定义
- 24.3 备忘录模式的应用
- 24.4 备忘录模式的扩展
- 24.5 最佳实践
- 第25章 访问者模式
- 25.2 访问者模式的定义
- 25.3 访问者模式的应用
- 25.4 访问者模式的扩展
- 25.5 最佳实践
- 第26章 状态模式
- 26.2 状态模式的定义
- 26.3 状态模式的应用
- 第27章 解释器模式
- 27.2 解释器模式的定义
- 27.3 解释器模式的应用
- 27.4 最佳实践
- 第28章 享元模式
- 28.2 享元模式的定义
- 28.3 享元模式的应用
- 28.4 享元模式的扩展
- 28.5 最佳实践
- 第29章 桥梁模式
- 29.2 桥梁模式的定义
- 29.3 桥梁模式的应用
- 29.4 最佳实践
- 第三部分 谁的地盘谁做主 ——设计模式PK
- 第30章 创建类模式大PK
- 30.1 工厂方法模式VS建造者模式
- 30.2 抽象工厂模式VS建造者模式
- 第31章 结构类模式大PK
- 31.1 代理模式VS装饰模式
- 31.2 装饰模式VS适配器模式
- 第32章 行为类模式大PK
- 32.1 命令模式VS策略模式
- 32.2 策略模式VS状态模式
- 32.3 观察者模式VS责任链模式
- 第33章 跨战区PK
- 33.1 策略模式VS桥梁模式
- 33.2 门面模式VS中介者模式
- 33.3 包装模式群PK
- 第四部分 完美世界 ——设计模式混编
- 第34章 命令模式+责任链模式
- 34.2 混编小结
- 第35章 工厂方法模式+策略模式
- 35.2 混编小结
- 第36章 观察者模式+中介者模式
- 36.2 混编小结
- 第五部分 扩展篇
- 第37章 MVC框架
- 37.2 最佳实践
- 第38章 新模式
- 38.1 规格模式
- 38.2 对象池模式
- 38.3 雇工模式
- 38.4 黑板模式
- 38.5 空对象模式
- 附录 23种设计模式彩图