多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 多进程 要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识。 Unix/Linux操作系统提供了一个`fork()`系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是`fork()`调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。 子进程永远返回`0`,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用`getppid()`就可以拿到父进程的ID。 Python的`os`模块封装了常见的系统调用,其中就包括`fork`,可以在Python程序中轻松创建子进程: ``` # multiprocessing.py import os print 'Process (%s) start...' % os.getpid() pid = os.fork() if pid==0: print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()) else: print 'I (%s) just created a child process (%s).' % (os.getpid(), pid) ``` 运行结果如下: ``` Process (876) start... I (876) just created a child process (877). I am child process (877) and my parent is 876. ``` 由于Windows没有`fork`调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python! 有了`fork`调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。 ### multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有`fork`调用,难道在Windows上无法用Python编写多进程的程序? 由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。`multiprocessing`模块就是跨平台版本的多进程模块。 `multiprocessing`模块提供了一个`Process`类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束: ``` from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print 'Run child process %s (%s)...' % (name, os.getpid()) if __name__=='__main__': print 'Parent process %s.' % os.getpid() p = Process(target=run_proc, args=('test',)) print 'Process will start.' p.start() p.join() print 'Process end.' ``` 执行结果如下: ``` Parent process 928. Process will start. Run child process test (929)... Process end. ``` 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个`Process`实例,用`start()`方法启动,这样创建进程比`fork()`还要简单。 `join()`方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。 ### Pool 如果要启动大量的子进程,可以用进程池的方式批量创建子进程: ``` from multiprocessing import Pool import os, time, random def long_time_task(name): print 'Run task %s (%s)...' % (name, os.getpid()) start = time.time() time.sleep(random.random() * 3) end = time.time() print 'Task %s runs %0.2f seconds.' % (name, (end - start)) if __name__=='__main__': print 'Parent process %s.' % os.getpid() p = Pool() for i in range(5): p.apply_async(long_time_task, args=(i,)) print 'Waiting for all subprocesses done...' p.close() p.join() print 'All subprocesses done.' ``` 执行结果如下: ``` Parent process 669. Waiting for all subprocesses done... Run task 0 (671)... Run task 1 (672)... Run task 2 (673)... Run task 3 (674)... Task 2 runs 0.14 seconds. Run task 4 (673)... Task 1 runs 0.27 seconds. Task 3 runs 0.86 seconds. Task 0 runs 1.41 seconds. Task 4 runs 1.91 seconds. All subprocesses done. ``` 代码解读: 对`Pool`对象调用`join()`方法会等待所有子进程执行完毕,调用`join()`之前必须先调用`close()`,调用`close()`之后就不能继续添加新的`Process`了。 请注意输出的结果,task `0`,`1`,`2`,`3`是立刻执行的,而task `4`要等待前面某个task完成后才执行,这是因为`Pool`的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是`Pool`有意设计的限制,并不是操作系统的限制。如果改成: ``` p = Pool(5) ``` 就可以同时跑5个进程。 由于`Pool`的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。 ### 进程间通信 `Process`之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的`multiprocessing`模块包装了底层的机制,提供了`Queue`、`Pipes`等多种方式来交换数据。 我们以`Queue`为例,在父进程中创建两个子进程,一个往`Queue`里写数据,一个从`Queue`里读数据: ``` from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in ['A', 'B', 'C']: print 'Put %s to queue...' % value q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: value = q.get(True) print 'Get %s from queue.' % value if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 启动子进程pr,读取: pr.start() # 等待pw结束: pw.join() # pr进程里是死循环,无法等待其结束,只能强行终止: pr.terminate() ``` 运行结果如下: ``` Put A to queue... Get A from queue. Put B to queue... Get B from queue. Put C to queue... Get C from queue. ``` 在Unix/Linux下,`multiprocessing`模块封装了`fork()`调用,使我们不需要关注`fork()`的细节。由于Windows没有`fork`调用,因此,`multiprocessing`需要“模拟”出`fork`的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果`multiprocessing`在Windows下调用失败了,要先考虑是不是pickle失败了。 ### 小结 在Unix/Linux下,可以使用`fork()`调用实现多进程。 要实现跨平台的多进程,可以使用`multiprocessing`模块。 进程间通信是通过`Queue`、`Pipes`等实现的。