# 装饰器
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
```
>>> def now():
... print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25
```
函数对象有一个`__name__`属性,可以拿到函数的名字:
```
>>> now.__name__
'now'
>>> f.__name__
'now'
```
现在,假设我们要增强`now()`函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改`now()`函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
```
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
```
观察上面的`log`,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
```
@log
def now():
print('2015-3-25')
```
调用`now()`函数,不仅会运行`now()`函数本身,还会在运行`now()`函数前打印一行日志:
```
>>> now()
call now():
2015-3-25
```
把`@log`放到`now()`函数的定义处,相当于执行了语句:
```
now = log(now)
```
由于`log()`是一个decorator,返回一个函数,所以,原来的`now()`函数仍然存在,只是现在同名的`now`变量指向了新的函数,于是调用`now()`将执行新函数,即在`log()`函数中返回的`wrapper()`函数。
`wrapper()`函数的参数定义是`(*args, **kw)`,因此,`wrapper()`函数可以接受任意参数的调用。在`wrapper()`函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
```
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
```
这个3层嵌套的decorator用法如下:
```
@log('execute')
def now():
print('2015-3-25')
```
执行结果如下:
```
>>> now()
execute now():
2015-3-25
```
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
```
>>> now = log('execute')(now)
```
我们来剖析上面的语句,首先执行`log('execute')`,返回的是`decorator`函数,再调用返回的函数,参数是`now`函数,返回值最终是`wrapper`函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有`__name__`等属性,但你去看经过decorator装饰之后的函数,它们的`__name__`已经从原来的`'now'`变成了`'wrapper'`:
```
>>> now.__name__
'wrapper'
```
因为返回的那个`wrapper()`函数名字就是`'wrapper'`,所以,需要把原始函数的`__name__`等属性复制到`wrapper()`函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写`wrapper.__name__ = func.__name__`这样的代码,Python内置的`functools.wraps`就是干这个事的,所以,一个完整的decorator的写法如下:
```
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
```
或者针对带参数的decorator:
```
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
```
`import functools`是导入`functools`模块。模块的概念稍候讲解。现在,只需记住在定义`wrapper()`的前面加上`@functools.wraps(func)`即可。
## 小结
在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。
decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。
请编写一个decorator,能在函数调用的前后打印出`'begin call'`和`'end call'`的日志。
再思考一下能否写出一个`@log`的decorator,使它既支持:
```
@log
def f():
pass
```
又支持:
```
@log('execute')
def f():
pass
```
## 参考源码
[decorator.py](https://github.com/michaelliao/learn-python3/blob/master/samples/functional/decorator.py)
- JavaScript教程
- JavaScript简介
- 快速入门
- 基本语法
- 数据类型和变量
- 字符串
- 数组
- 对象
- 条件判断
- 循环
- Map和Set
- iterable
- 函数
- 函数定义和调用
- 变量作用域
- 方法
- 高阶函数
- map/reduce
- filter
- sort
- 闭包
- 箭头函数
- generator
- 标准对象
- Date
- RegExp
- JSON
- 面向对象编程
- 创建对象
- 原型继承
- 浏览器
- 浏览器对象
- 操作DOM
- 更新DOM
- 插入DOM
- 删除DOM
- 操作表单
- 操作文件
- AJAX
- Promise
- Canvas
- jQuery
- 选择器
- 层级选择器
- 查找和过滤
- 操作DOM
- 修改DOM结构
- 事件
- 动画
- 扩展
- underscore
- Collections
- Arrays
- Functions
- Objects
- Chaining
- Node.js
- 安装Node.js和npm
- 第一个Node程序
- 模块
- 基本模块
- fs
- stream
- http
- buffer
- Web开发
- koa
- mysql
- swig
- 自动化工具
- 期末总结
- Python 2.7教程
- Python简介
- 安装Python
- Python解释器
- 第一个Python程序
- 使用文本编辑器
- 输入和输出
- Python基础
- 数据类型和变量
- 字符串和编码
- 使用list和tuple
- 条件判断和循环
- 使用dict和set
- 函数
- 调用函数
- 定义函数
- 函数的参数
- 递归函数
- 高级特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 函数式编程
- 高阶函数
- map/reduce
- filter
- sorted
- 返回函数
- 匿名函数
- 装饰器
- 偏函数
- 模块
- 使用模块
- 安装第三方模块
- 使用__future__
- 面向对象编程
- 类和实例
- 访问限制
- 继承和多态
- 获取对象信息
- 面向对象高级编程
- 使用__slots__
- 使用@property
- 多重继承
- 定制类
- 使用元类
- 错误、调试和测试
- 错误处理
- 调试
- 单元测试
- 文档测试
- IO编程
- 文件读写
- 操作文件和目录
- 序列化
- 进程和线程
- 多进程
- 多线程
- ThreadLocal
- 进程 vs. 线程
- 分布式进程
- 正则表达式
- 常用内建模块
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- 常用第三方模块
- PIL
- 图形界面
- 网络编程
- TCP/IP简介
- TCP编程
- UDP编程
- 电子邮件
- SMTP发送邮件
- POP3收取邮件
- 访问数据库
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web开发
- HTTP协议简介
- HTML简介
- WSGI接口
- 使用Web框架
- 使用模板
- 协程
- gevent
- 实战
- Day 1 - 搭建开发环境
- Day 2 - 编写数据库模块
- Day 3 - 编写ORM
- Day 4 - 编写Model
- Day 5 - 编写Web框架
- Day 6 - 添加配置文件
- Day 7 - 编写MVC
- Day 8 - 构建前端
- Day 9 - 编写API
- Day 10 - 用户注册和登录
- Day 11 - 编写日志创建页
- Day 12 - 编写日志列表页
- Day 13 - 提升开发效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 编写移动App
- 期末总结
- Python3教程
- Python简介
- 安装Python
- Python解释器
- 第一个Python程序
- 使用文本编辑器
- Python代码运行助手
- 输入和输出
- Python基础
- 数据类型和变量
- 字符串和编码
- 使用list和tuple
- 条件判断
- 循环
- 使用dict和set
- 函数
- 调用函数
- 定义函数
- 函数的参数
- 递归函数
- 高级特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 迭代器
- 函数式编程
- 高阶函数
- map/reduce
- filter
- sorted
- 返回函数
- 匿名函数
- 装饰器
- 偏函数
- 模块
- 使用模块
- 安装第三方模块
- 面向对象编程
- 类和实例
- 访问限制
- 继承和多态
- 获取对象信息
- 实例属性和类属性
- 面向对象高级编程
- 使用__slots__
- 使用@property
- 多重继承
- 定制类
- 使用枚举类
- 使用元类
- 错误、调试和测试
- 错误处理
- 调试
- 单元测试
- 文档测试
- IO编程
- 文件读写
- StringIO和BytesIO
- 操作文件和目录
- 序列化
- 进程和线程
- 多进程
- 多线程
- ThreadLocal
- 进程 vs. 线程
- 分布式进程
- 正则表达式
- 常用内建模块
- datetime
- collections
- base64
- struct
- hashlib
- itertools
- XML
- HTMLParser
- urllib
- 常用第三方模块
- PIL
- virtualenv
- 图形界面
- 网络编程
- TCP/IP简介
- TCP编程
- UDP编程
- 电子邮件
- SMTP发送邮件
- POP3收取邮件
- 访问数据库
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web开发
- HTTP协议简介
- HTML简介
- WSGI接口
- 使用Web框架
- 使用模板
- 异步IO
- 协程
- asyncio
- async/await
- aiohttp
- 实战
- Day 1 - 搭建开发环境
- Day 2 - 编写Web App骨架
- Day 3 - 编写ORM
- Day 4 - 编写Model
- Day 5 - 编写Web框架
- Day 6 - 编写配置文件
- Day 7 - 编写MVC
- Day 8 - 构建前端
- Day 9 - 编写API
- Day 10 - 用户注册和登录
- Day 11 - 编写日志创建页
- Day 12 - 编写日志列表页
- Day 13 - 提升开发效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 编写移动App
- FAQ
- 期末总结
- Git教程
- Git简介
- Git的诞生
- 集中式vs分布式
- 安装Git
- 创建版本库
- 时光机穿梭
- 版本回退
- 工作区和暂存区
- 管理修改
- 撤销修改
- 删除文件
- 远程仓库
- 添加远程库
- 从远程库克隆
- 分支管理
- 创建与合并分支
- 解决冲突
- 分支管理策略
- Bug分支
- Feature分支
- 多人协作
- 标签管理
- 创建标签
- 操作标签
- 使用GitHub
- 自定义Git
- 忽略特殊文件
- 配置别名
- 搭建Git服务器
- 期末总结