# 使用占位符和变量
占位符和变量是在 TensorFlow 中使用计算图的关键工具。我们必须了解它们之间的区别以及何时最好地利用它们对我们有利。
## 做好准备
与数据最重要的区别之一是它是占位符还是变量。变量是算法的模型参数,TensorFlow 跟踪如何更改这些参数以优化算法。占位符是允许您提供特定类型和形状的数据的对象,或者取决于计算图的结果,例如计算的预期结果。
## 操作步骤
创建变量的主要方法是使用`Variable()`函数,该函数将张量作为输入并输出变量。这只是声明,我们仍然需要初始化变量。初始化是将变量与相应方法放在计算图上的内容。以下是创建和初始化变量的示例:
```py
my_var = tf.Variable(tf.zeros([2,3]))
sess = tf.Session()
initialize_op = tf.global_variables_initializer()
sess.run(initialize_op)
```
要在创建和初始化变量后查看计算图是什么样的,请参阅此秘籍的以下部分。占位符只是保持数据的位置以输入图。占位符从会话中的`feed_dict`参数获取数据。要将占位符放入图中,我们必须对占位符执行至少一个操作。在下面的代码片段中,我们初始化图,将`x`声明为占位符(预定义大小),并将`y`定义为`x`上的标识操作,它只返回`x`。然后,我们创建数据以提供给`x`占位符并运行身份操作。代码如下所示,结果图如下:
```py
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[2,2])
y = tf.identity(x)
x_vals = np.random.rand(2,2)
sess.run(y, feed_dict={x: x_vals})
# Note that sess.run(x, feed_dict={x: x_vals}) will result in a self-referencing error.
```
> 值得注意的是,TensorFlow 不会在 Feed 字典中返回自引用占位符。换句话说,在下图中运行`sess.run(x, feed_dict={x: x_vals})`将返回错误。
## 工作原理
将变量初始化为零张量的计算图如下图所示:
![](https://img.kancloud.cn/f6/41/f64186742e74c3d7deda7e4373cb3871_1191x401.png)
图 1:变量
在这里,我们只用一个变量就可以看到计算图的详细信息,并将其全部初始化为零。灰色阴影区域是对所涉及的操作和常数的非常详细的视图。细节较少的主要计算图是右上角灰色区域之外的较小图。有关创建和可视化图的更多详细信息,请参阅[第 10 章](http://Taking%20TensorFlow%20to%20Production)的第一部分,将 TensorFlow 转换为生产。类似地,可以在下图中看到将 NumPy 数组送入占位符的计算图:
![](https://img.kancloud.cn/80/3b/803b2d4c9350383092b985d1aecdd5fa_160x195.png)
图 2:初始化占位符的计算图
灰色阴影区域是对所涉及的操作和常数的非常详细的视图。细节较少的主要计算图是右上角灰色区域之外的较小图。
## 更多
在计算图运行期间,我们必须告诉 TensorFlow 何时初始化我们创建的变量。虽然每个变量都有一个`initializer`方法,但最常用的方法是使用辅助函数,即`global_variables_initializer()`。此函数在图中创建一个初始化我们创建的所有变量的操作,如下所示:
```py
initializer_op = tf.global_variables_initializer()
```
但是如果我们想根据初始化另一个变量的结果来初始化变量,我们必须按照我们想要的顺序初始化变量,如下所示:
```py
sess = tf.Session()
first_var = tf.Variable(tf.zeros([2,3]))
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like(first_var))
# 'second_var' depends on the 'first_var'
sess.run(second_var.initializer)
```
- TensorFlow 入门
- 介绍
- TensorFlow 如何工作
- 声明变量和张量
- 使用占位符和变量
- 使用矩阵
- 声明操作符
- 实现激活函数
- 使用数据源
- 其他资源
- TensorFlow 的方式
- 介绍
- 计算图中的操作
- 对嵌套操作分层
- 使用多个层
- 实现损失函数
- 实现反向传播
- 使用批量和随机训练
- 把所有东西结合在一起
- 评估模型
- 线性回归
- 介绍
- 使用矩阵逆方法
- 实现分解方法
- 学习 TensorFlow 线性回归方法
- 理解线性回归中的损失函数
- 实现 deming 回归
- 实现套索和岭回归
- 实现弹性网络回归
- 实现逻辑回归
- 支持向量机
- 介绍
- 使用线性 SVM
- 简化为线性回归
- 在 TensorFlow 中使用内核
- 实现非线性 SVM
- 实现多类 SVM
- 最近邻方法
- 介绍
- 使用最近邻
- 使用基于文本的距离
- 使用混合距离函数的计算
- 使用地址匹配的示例
- 使用最近邻进行图像识别
- 神经网络
- 介绍
- 实现操作门
- 使用门和激活函数
- 实现单层神经网络
- 实现不同的层
- 使用多层神经网络
- 改进线性模型的预测
- 学习玩井字棋
- 自然语言处理
- 介绍
- 使用词袋嵌入
- 实现 TF-IDF
- 使用 Skip-Gram 嵌入
- 使用 CBOW 嵌入
- 使用 word2vec 进行预测
- 使用 doc2vec 进行情绪分析
- 卷积神经网络
- 介绍
- 实现简单的 CNN
- 实现先进的 CNN
- 重新训练现有的 CNN 模型
- 应用 StyleNet 和 NeuralStyle 项目
- 实现 DeepDream
- 循环神经网络
- 介绍
- 为垃圾邮件预测实现 RNN
- 实现 LSTM 模型
- 堆叠多个 LSTM 层
- 创建序列到序列模型
- 训练 Siamese RNN 相似性度量
- 将 TensorFlow 投入生产
- 介绍
- 实现单元测试
- 使用多个执行程序
- 并行化 TensorFlow
- 将 TensorFlow 投入生产
- 生产环境 TensorFlow 的一个例子
- 使用 TensorFlow 服务
- 更多 TensorFlow
- 介绍
- 可视化 TensorBoard 中的图
- 使用遗传算法
- 使用 k 均值聚类
- 求解常微分方程组
- 使用随机森林
- 使用 TensorFlow 和 Keras