# 实现单层神经网络
我们拥有实现对真实数据进行操作的神经网络所需的所有工具,因此在本节中我们将创建一个神经网络,其中一个层在`Iris`数据集上运行。
## 做好准备
在本节中,我们将实现一个具有一个隐藏层的神经网络。重要的是要理解完全连接的神经网络主要基于矩阵乘法。因此,重要的是数据和矩阵的尺寸正确排列。
由于这是一个回归问题,我们将使用均方误差作为损失函数。
## 操作步骤
我们按如下方式处理秘籍:
1. 要创建计算图,我们首先加载以下必要的库:
```py
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
```
1. 现在我们将加载`Iris`数据并将长度存储为目标值。然后我们将使用以下代码启动图会话:
```py
iris = datasets.load_iris()
x_vals = np.array([x[0:3] for x in iris.data])
y_vals = np.array([x[3] for x in iris.data])
sess = tf.Session()
```
1. 由于数据集较小,我们需要设置种子以使结果可重现,如下所示:
```py
seed = 2
tf.set_random_seed(seed)
np.random.seed(seed)
```
1. 为了准备数据,我们将创建一个 80-20 训练测试分割,并通过最小 - 最大缩放将 x 特征标准化为 0 到 1 之间,如下所示:
```py
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
def normalize_cols(m):
col_max = m.max(axis=0)
col_min = m.min(axis=0)
return (m-col_min) / (col_max - col_min)
x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))
```
1. 现在,我们将使用以下代码声明数据和目标的批量大小和占位符:
```py
batch_size = 50
x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
```
1. 重要的是要用适当的形状声明我们的模型变量。我们可以将隐藏层的大小声明为我们希望的任何大小;在下面的代码块中,我们将其设置为有五个隐藏节点:
```py
hidden_layer_nodes = 5
A1 = tf.Variable(tf.random_normal(shape=[3,hidden_layer_nodes]))
b1 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes]))
A2 = tf.Variable(tf.random_normal(shape=[hidden_layer_nodes,1]))
b2 = tf.Variable(tf.random_normal(shape=[1]))
```
1. 我们现在分两步宣布我们的模型。第一步是创建隐藏层输出,第二步是创建模型的`final_output`,如下所示:
> 请注意,我们的模型从三个输入特征到五个隐藏节点,最后到一个输出值。
```py
hidden_output = tf.nn.relu(tf.add(tf.matmul(x_data, A1), b1))
final_output = tf.nn.relu(tf.add(tf.matmul(hidden_output, A2), b2))
```
1. 我们作为`loss`函数的均方误差如下:
```py
loss = tf.reduce_mean(tf.square(y_target - final_output))
```
1. 现在我们将声明我们的优化算法并使用以下代码初始化我们的变量:
```py
my_opt = tf.train.GradientDescentOptimizer(0.005)
train_step = my_opt.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
```
1. 接下来,我们循环我们的训练迭代。我们还将初始化两个列表,我们可以存储我们的训练和`test_loss`函数。在每个循环中,我们还希望从训练数据中随机选择一个批量以适合模型,如下所示:
```py
# First we initialize the loss vectors for storage.
loss_vec = []
test_loss = []
for i in range(500):
# We select a random set of indices for the batch.
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
# We then select the training values
rand_x = x_vals_train[rand_index]
rand_y = np.transpose([y_vals_train[rand_index]])
# Now we run the training step
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
# We save the training loss
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(np.sqrt(temp_loss))
# Finally, we run the test-set loss and save it.
test_temp_loss = sess.run(loss, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
test_loss.append(np.sqrt(test_temp_loss))
if (i+1)%50==0:
print('Generation: ' + str(i+1) + '. Loss = ' + str(temp_loss))
```
1. 我们可以用`matplotlib`和以下代码绘制损失:
```py
plt.plot(loss_vec, 'k-', label='Train Loss')
plt.plot(test_loss, 'r--', label='Test Loss')
plt.title('Loss (MSE) per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()
```
我们通过绘制下图来继续秘籍:
![](https://img.kancloud.cn/e1/5a/e15a8e89257a6650e9a536895a0c4c67_393x281.png)
图 4:我们绘制了训练和测试装置的损失(MSE)。请注意,我们在 200 代之后略微过拟合模型,因为测试 MSE 不会进一步下降,但训练 MSE 确实
## 工作原理
我们的模型现已可视化为神经网络图,如下图所示:
![](https://img.kancloud.cn/c2/e6/c2e658044491f1ecec5d35838399ca73_905x436.png)
图 5:上图是我们的神经网络的可视化,在隐藏层中有五个节点。我们喂养三个值:萼片长度(S.L),萼片宽度(S.W.)和花瓣长度(P.L.)。目标将是花瓣宽度。总的来说,模型中总共有 26 个变量
## 更多
请注意,通过查看测试和训练集上的`loss`函数,我们可以确定模型何时开始过拟合训练数据。我们还可以看到训练损失并不像测试装置那样平稳。这是因为有两个原因:第一个原因是我们使用的批量小于测试集,尽管不是很多;第二个原因是由于我们正在训练训练组,而测试装置不会影响模型的变量。
- TensorFlow 入门
- 介绍
- TensorFlow 如何工作
- 声明变量和张量
- 使用占位符和变量
- 使用矩阵
- 声明操作符
- 实现激活函数
- 使用数据源
- 其他资源
- TensorFlow 的方式
- 介绍
- 计算图中的操作
- 对嵌套操作分层
- 使用多个层
- 实现损失函数
- 实现反向传播
- 使用批量和随机训练
- 把所有东西结合在一起
- 评估模型
- 线性回归
- 介绍
- 使用矩阵逆方法
- 实现分解方法
- 学习 TensorFlow 线性回归方法
- 理解线性回归中的损失函数
- 实现 deming 回归
- 实现套索和岭回归
- 实现弹性网络回归
- 实现逻辑回归
- 支持向量机
- 介绍
- 使用线性 SVM
- 简化为线性回归
- 在 TensorFlow 中使用内核
- 实现非线性 SVM
- 实现多类 SVM
- 最近邻方法
- 介绍
- 使用最近邻
- 使用基于文本的距离
- 使用混合距离函数的计算
- 使用地址匹配的示例
- 使用最近邻进行图像识别
- 神经网络
- 介绍
- 实现操作门
- 使用门和激活函数
- 实现单层神经网络
- 实现不同的层
- 使用多层神经网络
- 改进线性模型的预测
- 学习玩井字棋
- 自然语言处理
- 介绍
- 使用词袋嵌入
- 实现 TF-IDF
- 使用 Skip-Gram 嵌入
- 使用 CBOW 嵌入
- 使用 word2vec 进行预测
- 使用 doc2vec 进行情绪分析
- 卷积神经网络
- 介绍
- 实现简单的 CNN
- 实现先进的 CNN
- 重新训练现有的 CNN 模型
- 应用 StyleNet 和 NeuralStyle 项目
- 实现 DeepDream
- 循环神经网络
- 介绍
- 为垃圾邮件预测实现 RNN
- 实现 LSTM 模型
- 堆叠多个 LSTM 层
- 创建序列到序列模型
- 训练 Siamese RNN 相似性度量
- 将 TensorFlow 投入生产
- 介绍
- 实现单元测试
- 使用多个执行程序
- 并行化 TensorFlow
- 将 TensorFlow 投入生产
- 生产环境 TensorFlow 的一个例子
- 使用 TensorFlow 服务
- 更多 TensorFlow
- 介绍
- 可视化 TensorBoard 中的图
- 使用遗传算法
- 使用 k 均值聚类
- 求解常微分方程组
- 使用随机森林
- 使用 TensorFlow 和 Keras