# 将 TensorFlow 投入生产
如果我们想在生产环境中使用我们的机器学习脚本,我们首先需要考虑一些要点作为最佳实践。在本节中,我们将概述其中的一些内容。
## 做好准备
在本文中,我们想总结并浓缩将 TensorFlow 投入生产的各种技巧。我们将介绍如何最好地保存和加载词汇表,图,变量和模型检查点。我们还将讨论如何使用 TensorFlow 的命令行参数解析器并更改 TensorFlow 的日志记录详细程度。
## 操作步骤
1. 运行 TensorFlow 程序时,我们可能需要检查内存中是否已存在其他图会话,或者在调试程序后是否清除了图会话。我们可以使用以下命令行来完成此任务:
```py
from tensorflow.python.framework import ops
ops.reset_default_graph()
```
1. 在处理文本(或任何数据管道)时,我们需要确保我们保存处理数据的方式,以便我们可以以相同的方式处理未来的评估数据。例如,如果我们处理文本,我们需要确保我们可以保存并加载词汇表。以下代码是如何使用`JSON`库保存词汇表字典的示例:
```py
import json word_list = ['to', 'be', 'or', 'not', 'to', 'be']
vocab_list = list(set(word_list))
vocab2ix_dict = dict(zip(vocab_list, range(len(vocab_list))))
ix2vocab_dict = {val:key for key,val in vocab2ix_dict.items()}
# Save vocabulary
import json
with open('vocab2ix_dict.json', 'w') as file_conn:
json.dump(vocab2ix_dict, file_conn)
# Load vocabulary
with open('vocab2ix_dict.json', 'r') as file_conn:
vocab2ix_dict = json.load(file_conn)
```
> 在这里,我们以`JSON`格式保存了词汇词典,但我们也可以将其保存在`text`文件,`csv`甚至二进制格式中。如果词汇量很大,则首选二进制文件。您还可以考虑使用 pickle 库来创建`pkl`二进制文件,但请注意,pickle 文件在库和 Python 版本之间不能很好地转换。
1. 为了保存模型图和变量,我们创建了一个`Saver()`操作并将其添加到图中。建议我们在训练期间定期保存模型。要保存模型,请输入以下代码:
```py
After model declaration, add a saving operations
saver = tf.train.Saver()
# Then during training, save every so often, referencing the training generation
for i in range(generations):
...
if i%save_every == 0:
saver.save(sess, 'my_model', global_step=step)
# Can also save only specific variables:
saver = tf.train.Saver({"my_var": my_variable})
```
> 请注意,`Saver()`操作也会采用其他参数。如前面的示例所示,它可以使用变量和张量字典来保存特定元素。每隔`n`小时也可以检查一次,定期执行保存操作。默认情况下,保存操作仅保留最后五个模型保存(出于空间考虑)。可以使用`maximum_to_keep`选项更改此设置。
1. 在保存模型之前,请务必命名模型的重要操作。如果 TensorFlow 没有名称,则没有简单的方法来加载特定的占位符,操作或变量。 TensorFlow 中的大多数操作和函数都接受`name`参数,如下例所示:
```py
conv_weights = tf.Variable(tf.random_normal(), name='conv_weights')
loss = tf.reduce_mean(... , name='loss')
```
1. TensorFlow 还可以使用`tf.apps.flags`库在命令行上轻松执行 arg-parsing。使用这些函数,我们可以定义字符串,浮点数,整数或布尔值的命令行参数,如下面的代码片段所示。使用这些标志定义,我们可以运行`tf.app.run()`,它将使用以下标志参数运行`main()`函数:
```py
tf.flags.DEFINE_string("worker_locations", "", "List of worker addresses.")
tf.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
tf.flags.DEFINE_integer('generations', 1000, 'Number of training generations.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')
FLAGS = tf.flags.FLAGS
# Need to define a 'main' function for the app to run
def main(_):
worker_ips = FLAGS.worker_locations.split(",")
learning_rate = FLAGS.learning_rate
generations = FLAGS.generations
run_unit_tests = FLAGS.run_unit_tests
# Run the Tensorflow app
if __name__ == "__main__":
# The following is looking for a "main()" function to run and will pass.
tf.app.run()
# Can modify this to be more custom:
tf.app.run(main=my_main_function(), argv=my_arguments)
```
1. TensorFlow 具有内置日志记录,我们可以为其设置级别参数。我们可以设定的水平是`DEBUG`,`INFO`,`WARN`,`ERROR`和`FATAL`。默认为`WARN`,如下所示:
```py
tf.logging.set_verbosity(tf.logging.WARN)
# WARN is the default value, but to see more information, you can set it to
# INFO or DEBUG
tf.logging.set_verbosity(tf.logging.DEBUG)
```
## 工作原理
在本节中,我们提供了在 TensorFlow 中创建生产级代码的提示。我们想介绍 app-flags,模型保存和日志记录等概念,以便用户可以使用这些工具一致地编写代码,并了解在其他代码中看到这些工具时的含义。还有许多其他方法可以编写好的生产代码,但下面的秘籍中将显示完整的示例。
- TensorFlow 入门
- 介绍
- TensorFlow 如何工作
- 声明变量和张量
- 使用占位符和变量
- 使用矩阵
- 声明操作符
- 实现激活函数
- 使用数据源
- 其他资源
- TensorFlow 的方式
- 介绍
- 计算图中的操作
- 对嵌套操作分层
- 使用多个层
- 实现损失函数
- 实现反向传播
- 使用批量和随机训练
- 把所有东西结合在一起
- 评估模型
- 线性回归
- 介绍
- 使用矩阵逆方法
- 实现分解方法
- 学习 TensorFlow 线性回归方法
- 理解线性回归中的损失函数
- 实现 deming 回归
- 实现套索和岭回归
- 实现弹性网络回归
- 实现逻辑回归
- 支持向量机
- 介绍
- 使用线性 SVM
- 简化为线性回归
- 在 TensorFlow 中使用内核
- 实现非线性 SVM
- 实现多类 SVM
- 最近邻方法
- 介绍
- 使用最近邻
- 使用基于文本的距离
- 使用混合距离函数的计算
- 使用地址匹配的示例
- 使用最近邻进行图像识别
- 神经网络
- 介绍
- 实现操作门
- 使用门和激活函数
- 实现单层神经网络
- 实现不同的层
- 使用多层神经网络
- 改进线性模型的预测
- 学习玩井字棋
- 自然语言处理
- 介绍
- 使用词袋嵌入
- 实现 TF-IDF
- 使用 Skip-Gram 嵌入
- 使用 CBOW 嵌入
- 使用 word2vec 进行预测
- 使用 doc2vec 进行情绪分析
- 卷积神经网络
- 介绍
- 实现简单的 CNN
- 实现先进的 CNN
- 重新训练现有的 CNN 模型
- 应用 StyleNet 和 NeuralStyle 项目
- 实现 DeepDream
- 循环神经网络
- 介绍
- 为垃圾邮件预测实现 RNN
- 实现 LSTM 模型
- 堆叠多个 LSTM 层
- 创建序列到序列模型
- 训练 Siamese RNN 相似性度量
- 将 TensorFlow 投入生产
- 介绍
- 实现单元测试
- 使用多个执行程序
- 并行化 TensorFlow
- 将 TensorFlow 投入生产
- 生产环境 TensorFlow 的一个例子
- 使用 TensorFlow 服务
- 更多 TensorFlow
- 介绍
- 可视化 TensorBoard 中的图
- 使用遗传算法
- 使用 k 均值聚类
- 求解常微分方程组
- 使用随机森林
- 使用 TensorFlow 和 Keras