# 实现套索和岭回归
还有一些方法可以限制系数对回归输出的影响。这些方法称为正则化方法,两种最常见的正则化方法是套索和岭回归。我们将介绍如何在本文中实现这两个方面。
## 做好准备
套索和岭回归与常规线性回归非常相似,除了我们添加正则化项以限制公式中的斜率(或部分斜率)。这可能有多种原因,但一个常见的原因是我们希望限制对因变量产生影响的特征。这可以通过在损失函数中添加一个取决于我们的斜率值`A`的项来实现。
对于套索回归,如果斜率`A`超过某个值,我们必须添加一个能大大增加损失函数的项。我们可以使用 TensorFlow 的逻辑运算,但它们没有与之关联的梯度。相反,我们将使用称为连续重阶函数的阶梯函数的连续近似,该函数按比例放大到我们选择的正则化截止值。我们将展示如何在此秘籍中进行套索回归。
对于岭回归,我们只是在 L2 范数中添加一个项,这是斜率系数的缩放 L2 范数。这种修改很简单,并在本秘籍末尾的“更多...”部分中显示。
## 操作步骤
我们按如下方式处理秘籍:
1. 我们将再次使用 iris 数据集并以与以前相同的方式设置我们的脚本。我们先加载库;开始一个会议;加载数据;声明批量大小;并创建占位符,变量和模型输出,如下所示:
```py
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
batch_size = 50
learning_rate = 0.001
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)
```
1. 我们添加了损失函数,它是一个改进的连续 Heaviside 阶梯函数。我们还为`0.9`设定了套索回归的截止值。这意味着我们希望将斜率系数限制为小于`0.9`。使用以下代码:
```py
lasso_param = tf.constant(0.9)
heavyside_step = tf.truediv(1., tf.add(1., tf.exp(tf.multiply(-100., tf.subtract(A, lasso_param)))))
regularization_param = tf.mul(heavyside_step, 99.)
loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param)
```
1. 我们现在初始化变量并声明我们的优化器,如下所示:
```py
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)
```
1. 我们将训练循环延长了一段时间,因为它可能需要一段时间才能收敛。我们可以看到斜率系数小于`0.9`。使用以下代码:
```py
loss_vec = []
for i in range(1500):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss[0])
if (i+1)%300==0:
print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
print('Loss = ' + str(temp_loss))
Step #300 A = [[ 0.82512331]] b = [[ 2.30319238]]
Loss = [[ 6.84168959]]
Step #600 A = [[ 0.8200165]] b = [[ 3.45292258]]
Loss = [[ 2.02759886]]
Step #900 A = [[ 0.81428504]] b = [[ 4.08901262]]
Loss = [[ 0.49081498]]
Step #1200 A = [[ 0.80919558]] b = [[ 4.43668795]]
Loss = [[ 0.40478843]]
Step #1500 A = [[ 0.80433637]] b = [[ 4.6360755]]
Loss = [[ 0.23839757]]
```
## 工作原理
我们通过在线性回归的损失函数中添加连续的 Heaviside 阶跃函数来实现套索回归。由于阶梯函数的陡峭性,我们必须小心步长。步长太大而且不会收敛。对于岭回归,请参阅下一节中所需的更改。
## 更多
对于岭回归,我们将损失`ss`函数更改为如下:
```py
ridge_param = tf.constant(1.)
ridge_loss = tf.reduce_mean(tf.square(A))
loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0)
```
- TensorFlow 入门
- 介绍
- TensorFlow 如何工作
- 声明变量和张量
- 使用占位符和变量
- 使用矩阵
- 声明操作符
- 实现激活函数
- 使用数据源
- 其他资源
- TensorFlow 的方式
- 介绍
- 计算图中的操作
- 对嵌套操作分层
- 使用多个层
- 实现损失函数
- 实现反向传播
- 使用批量和随机训练
- 把所有东西结合在一起
- 评估模型
- 线性回归
- 介绍
- 使用矩阵逆方法
- 实现分解方法
- 学习 TensorFlow 线性回归方法
- 理解线性回归中的损失函数
- 实现 deming 回归
- 实现套索和岭回归
- 实现弹性网络回归
- 实现逻辑回归
- 支持向量机
- 介绍
- 使用线性 SVM
- 简化为线性回归
- 在 TensorFlow 中使用内核
- 实现非线性 SVM
- 实现多类 SVM
- 最近邻方法
- 介绍
- 使用最近邻
- 使用基于文本的距离
- 使用混合距离函数的计算
- 使用地址匹配的示例
- 使用最近邻进行图像识别
- 神经网络
- 介绍
- 实现操作门
- 使用门和激活函数
- 实现单层神经网络
- 实现不同的层
- 使用多层神经网络
- 改进线性模型的预测
- 学习玩井字棋
- 自然语言处理
- 介绍
- 使用词袋嵌入
- 实现 TF-IDF
- 使用 Skip-Gram 嵌入
- 使用 CBOW 嵌入
- 使用 word2vec 进行预测
- 使用 doc2vec 进行情绪分析
- 卷积神经网络
- 介绍
- 实现简单的 CNN
- 实现先进的 CNN
- 重新训练现有的 CNN 模型
- 应用 StyleNet 和 NeuralStyle 项目
- 实现 DeepDream
- 循环神经网络
- 介绍
- 为垃圾邮件预测实现 RNN
- 实现 LSTM 模型
- 堆叠多个 LSTM 层
- 创建序列到序列模型
- 训练 Siamese RNN 相似性度量
- 将 TensorFlow 投入生产
- 介绍
- 实现单元测试
- 使用多个执行程序
- 并行化 TensorFlow
- 将 TensorFlow 投入生产
- 生产环境 TensorFlow 的一个例子
- 使用 TensorFlow 服务
- 更多 TensorFlow
- 介绍
- 可视化 TensorBoard 中的图
- 使用遗传算法
- 使用 k 均值聚类
- 求解常微分方程组
- 使用随机森林
- 使用 TensorFlow 和 Keras