# 创建序列到序列模型
由于我们使用的每个 RNN 单元也都有输出,我们可以训练 RNN 序列来预测其他可变长度的序列。对于这个秘籍,我们将利用这一事实创建一个英语到德语的翻译模型。
## 做好准备
对于这个秘籍,我们将尝试构建一个语言翻译模型,以便从英语翻译成德语。
TensorFlow 具有用于序列到序列训练的内置模型类。我们将说明如何在下载的英语 - 德语句子上训练和使用它。我们将使用的数据来自 [http://www.manythings.org/](http://www.manythings.org/) 的编译 zip 文件,该文件汇编了 Tatoeba 项目的数据( [http://tatoeba.org/home](http://tatoeba.org/home) )。这些数据是制表符分隔的英语 - 德语句子翻译;例如,一行可能包含句子`hello. /t hallo`。该数据包含数千种不同长度的句子。
此部分的代码已升级为使用官方 TensorFlow 仓库提供的神经机器翻译模型: [https://github.com/tensorflow/nmt](https://github.com/tensorflow/nmt) 。
该项目将向您展示如何下载数据,使用,修改和添加到超参数,以及配置您自己的数据以使用项目文件。
虽然官方教程向您展示了如何通过命令行执行此操作,但本教程将向您展示如何使用提供的内部代码从头开始训练您自己的模型。
## 操作步骤
1. 我们首先加载必要的库:
```py
import os
import re
import sys
import json
import math
import time
import string
import requests
import io
import numpy as np
import collections
import random
import pickle
import string
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from collections import Counter
from tensorflow.python.ops import lookup_ops
from tensorflow.python.framework import ops
ops.reset_default_graph()
local_repository = 'temp/seq2seq'
```
1. 以下代码块将整个 NMT 模型仓库导入`temp`文件夹:
```py
if not os.path.exists(local_repository):
from git import Repo
tf_model_repository = 'https://github.com/tensorflow/nmt/'
Repo.clone_from(tf_model_repository, local_repository)
sys.path.insert(0, 'temp/seq2seq/nmt/')
# May also try to use 'attention model' by importing the attention model:
# from temp.seq2seq.nmt import attention_model as attention_model
from temp.seq2seq.nmt import model as model
from temp.seq2seq.nmt.utils import vocab_utils as vocab_utils
import temp.seq2seq.nmt.model_helper as model_helper
import temp.seq2seq.nmt.utils.iterator_utils as iterator_utils
import temp.seq2seq.nmt.utils.misc_utils as utils
import temp.seq2seq.nmt.train as train
```
1. 接下来,我们设置一些关于词汇量大小,我们将删除的标点符号以及数据存储位置的参数:
```py
# Model Parameters
vocab_size = 10000
punct = string.punctuation
# Data Parameters
data_dir = 'temp'
data_file = 'eng_ger.txt'
model_path = 'seq2seq_model'
full_model_dir = os.path.join(data_dir, model_path)
```
1. 我们将使用 TensorFlow 提供的超参数格式。这种类型的参数存储(在外部`json`或`xml`文件中)允许我们以编程方式迭代不同类型的体系结构(在不同的文件中)。对于本演示,我们将使用提供给我们的`wmt16.json`并进行一些更改:
```py
# Load hyper-parameters for translation model. (Good defaults are provided in Repository).
hparams = tf.contrib.training.HParams()
param_file = 'temp/seq2seq/nmt/standard_hparams/wmt16.json'
# Can also try: (For different architectures)
# 'temp/seq2seq/nmt/standard_hparams/iwslt15.json'
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_4_layer.json',
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_8_layer.json',
with open(param_file, "r") as f:
params_json = json.loads(f.read())
for key, value in params_json.items():
hparams.add_hparam(key, value)
hparams.add_hparam('num_gpus', 0)
hparams.add_hparam('num_encoder_layers', hparams.num_layers)
hparams.add_hparam('num_decoder_layers', hparams.num_layers)
hparams.add_hparam('num_encoder_residual_layers', 0)
hparams.add_hparam('num_decoder_residual_layers', 0)
hparams.add_hparam('init_op', 'uniform')
hparams.add_hparam('random_seed', None)
hparams.add_hparam('num_embeddings_partitions', 0)
hparams.add_hparam('warmup_steps', 0)
hparams.add_hparam('length_penalty_weight', 0)
hparams.add_hparam('sampling_temperature', 0.0)
hparams.add_hparam('num_translations_per_input', 1)
hparams.add_hparam('warmup_scheme', 't2t')
hparams.add_hparam('epoch_step', 0)
hparams.num_train_steps = 5000
# Not use any pretrained embeddings
hparams.add_hparam('src_embed_file', '')
hparams.add_hparam('tgt_embed_file', '')
hparams.add_hparam('num_keep_ckpts', 5)
hparams.add_hparam('avg_ckpts', False)
# Remove attention
hparams.attention = None
```
1. 如果模型和数据目录尚不存在,请创建它们:
```py
# Make Model Directory
if not os.path.exists(full_model_dir):
os.makedirs(full_model_dir)
# Make data directory
if not os.path.exists(data_dir):
os.makedirs(data_dir)
```
1. 现在我们删除标点符号并将翻译数据拆分为英语和德语句子的单词列表:
```py
print('Loading English-German Data')
# Check for data, if it doesn't exist, download it and save it
if not os.path.isfile(os.path.join(data_dir, data_file)):
print('Data not found, downloading Eng-Ger sentences from www.manythings.org')
sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
r = requests.get(sentence_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('deu.txt')
# Format Data
eng_ger_data = file.decode('utf-8')
eng_ger_data = eng_ger_data.encode('ascii', errors='ignore')
eng_ger_data = eng_ger_data.decode().split('\n')
# Write to file
with open(os.path.join(data_dir, data_file), 'w') as out_conn:
for sentence in eng_ger_data:
out_conn.write(sentence + '\n')
else:
eng_ger_data = []
with open(os.path.join(data_dir, data_file), 'r') as in_conn:
for row in in_conn:
eng_ger_data.append(row[:-1])
print('Done!')
```
1. 现在我们删除英语和德语句子的标点符号:
```py
# Remove punctuation
eng_ger_data = [''.join(char for char in sent if char not in punct) for sent in eng_ger_data]
# Split each sentence by tabs
eng_ger_data = [x.split('\t') for x in eng_ger_data if len(x) >= 1]
[english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
english_sentence = [x.lower().split() for x in english_sentence]
german_sentence = [x.lower().split() for x in german_sentence]
```
1. 为了使用 TensorFlow 中更快的数据管道函数,我们需要以适当的格式将格式化的数据写入磁盘。翻译模型期望的格式如下:
```py
train_prefix.source_suffix = train.en
train_prefix.target_suffix = train.de
```
后缀将决定语言(`en = English`,`de = deutsch`),前缀决定数据集的类型(训练或测试):
```py
# We need to write them to separate text files for the text-line-dataset operations.
train_prefix = 'train'
src_suffix = 'en' # English
tgt_suffix = 'de' # Deutsch (German)
source_txt_file = train_prefix + '.' + src_suffix
hparams.add_hparam('src_file', source_txt_file)
target_txt_file = train_prefix + '.' + tgt_suffix
hparams.add_hparam('tgt_file', target_txt_file)
with open(source_txt_file, 'w') as f:
for sent in english_sentence:
f.write(' '.join(sent) + '\n')
with open(target_txt_file, 'w') as f:
for sent in german_sentence:
f.write(' '.join(sent) + '\n')
```
1. 接下来,我们需要解析一些(~100)测试句子翻译。我们任意选择大约 100 个句子。然后我们也将它们写入适当的文件:
```py
# Partition some sentences off for testing files
test_prefix = 'test_sent'
hparams.add_hparam('dev_prefix', test_prefix)
hparams.add_hparam('train_prefix', train_prefix)
hparams.add_hparam('test_prefix', test_prefix)
hparams.add_hparam('src', src_suffix)
hparams.add_hparam('tgt', tgt_suffix)
num_sample = 100
total_samples = len(english_sentence)
# Get around 'num_sample's every so often in the src/tgt sentences
ix_sample = [x for x in range(total_samples) if x % (total_samples // num_sample) == 0]
test_src = [' '.join(english_sentence[x]) for x in ix_sample]
test_tgt = [' '.join(german_sentence[x]) for x in ix_sample]
# Write test sentences to file
with open(test_prefix + '.' + src_suffix, 'w') as f:
for eng_test in test_src:
f.write(eng_test + '\n')
with open(test_prefix + '.' + tgt_suffix, 'w') as f:
for ger_test in test_src:
f.write(ger_test + '\n')
```
1. 接下来,我们处理英语和德语句子的词汇表。然后我们将词汇表列表保存到适当的文件中:
```py
print('Processing the vocabularies.')
# Process the English Vocabulary
all_english_words = [word for sentence in english_sentence for word in sentence]
all_english_counts = Counter(all_english_words)
eng_word_keys = [x[0] for x in all_english_counts.most_common(vocab_size-3)] # -3 because UNK, S, /S is also in there
eng_vocab2ix = dict(zip(eng_word_keys, range(1, vocab_size)))
eng_ix2vocab = {val: key for key, val in eng_vocab2ix.items()}
english_processed = []
for sent in english_sentence:
temp_sentence = []
for word in sent:
try:
temp_sentence.append(eng_vocab2ix[word])
except KeyError:
temp_sentence.append(0)
english_processed.append(temp_sentence)
# Process the German Vocabulary
all_german_words = [word for sentence in german_sentence for word in sentence]
all_german_counts = Counter(all_german_words)
ger_word_keys = [x[0] for x in all_german_counts.most_common(vocab_size-3)]
# -3 because UNK, S, /S is also in there
ger_vocab2ix = dict(zip(ger_word_keys, range(1, vocab_size)))
ger_ix2vocab = {val: key for key, val in ger_vocab2ix.items()}
german_processed = []
for sent in german_sentence:
temp_sentence = []
for word in sent:
try:
temp_sentence.append(ger_vocab2ix[word])
except KeyError:
temp_sentence.append(0)
german_processed.append(temp_sentence)
# Save vocab files for data processing
source_vocab_file = 'vocab' + '.' + src_suffix
hparams.add_hparam('src_vocab_file', source_vocab_file)
eng_word_keys = ['<unk>', '<s>', '</s>'] + eng_word_keys
target_vocab_file = 'vocab' + '.' + tgt_suffix
hparams.add_hparam('tgt_vocab_file', target_vocab_file)
ger_word_keys = ['<unk>', '<s>', '</s>'] + ger_word_keys
# Write out all unique english words
with open(source_vocab_file, 'w') as f:
for eng_word in eng_word_keys:
f.write(eng_word + '\n')
# Write out all unique german words
with open(target_vocab_file, 'w') as f:
for ger_word in ger_word_keys:
f.write(ger_word + '\n')
# Add vocab size to hyper parameters
hparams.add_hparam('src_vocab_size', vocab_size)
hparams.add_hparam('tgt_vocab_size', vocab_size)
# Add out-directory
out_dir = 'temp/seq2seq/nmt_out'
hparams.add_hparam('out_dir', out_dir)
if not tf.gfile.Exists(out_dir):
tf.gfile.MakeDirs(out_dir)
```
1. 接下来,我们将分别创建训练,推断和评估图。首先,我们创建训练图。我们用一个类来做这个并将参数设为`namedtuple`。此代码来自 NMT TensorFlow 仓库。有关更多信息,请参阅名为`model_helper.py`的仓库中的文件:
```py
class TrainGraph(collections.namedtuple("TrainGraph", ("graph", "model", "iterator", "skip_count_placeholder"))):
pass
def create_train_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file, hparams.tgt_vocab_file,share_vocab=False)
src_dataset = tf.data.TextLineDataset(hparams.src_file)
tgt_dataset = tf.data.TextLineDataset(hparams.tgt_file)
skip_count_placeholder = tf.placeholder(shape=(), dtype=tf.int64)
iterator = iterator_utils.get_iterator(src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=None, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len, tgt_max_len=hparams.tgt_max_len, skip_count=skip_count_placeholder)
final_model = model.Model(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, scope=scope)
return TrainGraph(graph=graph, model=final_model, iterator=iterator, skip_count_placeholder=skip_count_placeholder)
train_graph = create_train_graph()
```
1. 我们现在创建评估图:
```py
# Create the evaluation graph
class EvalGraph(collections.namedtuple("EvalGraph", ("graph", "model", "src_file_placeholder", "tgt_file_placeholder","iterator"))):
pass
def create_eval_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
hparams.src_vocab_file, hparams.tgt_vocab_file, hparams.share_vocab)
src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
src_dataset = tf.data.TextLineDataset(src_file_placeholder)
tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
iterator = iterator_utils.get_iterator(
src_dataset,
tgt_dataset,
src_vocab_table,
tgt_vocab_table,
hparams.batch_size,
sos=hparams.sos,
eos=hparams.eos,
random_seed=hparams.random_seed,
num_buckets=hparams.num_buckets,
src_max_len=hparams.src_max_len_infer,
tgt_max_len=hparams.tgt_max_len_infer)
final_model = model.Model(hparams,
iterator=iterator,
mode=tf.contrib.learn.ModeKeys.EVAL,
source_vocab_table=src_vocab_table,
target_vocab_table=tgt_vocab_table,
scope=scope)
return EvalGraph(graph=graph,
model=final_model,
src_file_placeholder=src_file_placeholder,
tgt_file_placeholder=tgt_file_placeholder,
iterator=iterator)
eval_graph = create_eval_graph()
```
1. 现在我们对推理图做同样的事情:
```py
# Inference graph
class InferGraph(collections.namedtuple("InferGraph", ("graph","model","src_placeholder", "batch_size_placeholder","iterator"))):
pass
def create_infer_graph(scope=None):
graph = tf.Graph()
with graph.as_default():
src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file,hparams.tgt_vocab_file, hparams.share_vocab)
reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(hparams.tgt_vocab_file, default_value=vocab_utils.UNK)
src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)
src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder)
iterator = iterator_utils.get_infer_iterator(src_dataset,
src_vocab_table,
batch_size=batch_size_placeholder,
eos=hparams.eos,
src_max_len=hparams.src_max_len_infer)
final_model = model.Model(hparams,
iterator=iterator,
mode=tf.contrib.learn.ModeKeys.INFER,
source_vocab_table=src_vocab_table,
target_vocab_table=tgt_vocab_table,
reverse_target_vocab_table=reverse_tgt_vocab_table,
scope=scope)
return InferGraph(graph=graph,
model=final_model,
src_placeholder=src_placeholder,
batch_size_placeholder=batch_size_placeholder,
iterator=iterator)
infer_graph = create_infer_graph()
```
1. 为了在训练期间提供更多说明性输出,我们提供了在训练迭代期间输出的任意源/目标翻译的简短列表:
```py
# Create sample data for evaluation
sample_ix = [25, 125, 240, 450]
sample_src_data = [' '.join(english_sentence[x]) for x in sample_ix]
sample_tgt_data = [' '.join(german_sentence[x]) for x in sample_ix]
print([x for x in zip(sample_src_data, sample_tgt_data)])
```
1. 接下来,我们加载训练图:
```py
config_proto = utils.get_config_proto()
train_sess = tf.Session(config=config_proto, graph=train_graph.graph)
eval_sess = tf.Session(config=config_proto, graph=eval_graph.graph)
infer_sess = tf.Session(config=config_proto, graph=infer_graph.graph)
# Load the training graph
with train_graph.graph.as_default():
loaded_train_model, global_step = model_helper.create_or_load_model(train_graph.model,
hparams.out_dir,
train_sess,
"train")
summary_writer = tf.summary.FileWriter(os.path.join(hparams.out_dir, 'Training'), train_graph.graph)
```
1. 现在我们将评估操作添加到图中:
```py
for metric in hparams.metrics:
hparams.add_hparam("best_" + metric, 0)
best_metric_dir = os.path.join(hparams.out_dir, "best_" + metric)
hparams.add_hparam("best_" + metric + "_dir", best_metric_dir)
tf.gfile.MakeDirs(best_metric_dir)
eval_output = train.run_full_eval(hparams.out_dir, infer_graph, infer_sess, eval_graph, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data)
eval_results, _, acc_blue_scores = eval_output
```
1. 现在我们创建初始化操作并初始化图;我们还初始化了一些将更新每次迭代的参数(时间,全局步骤和周期步骤):
```py
# Training Initialization
last_stats_step = global_step
last_eval_step = global_step
last_external_eval_step = global_step
steps_per_eval = 10 * hparams.steps_per_stats
steps_per_external_eval = 5 * steps_per_eval
avg_step_time = 0.0
step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
checkpoint_total_count = 0.0
speed, train_ppl = 0.0, 0.0
utils.print_out("# Start step %d, lr %g, %s" %
(global_step, loaded_train_model.learning_rate.eval(session=train_sess),
time.ctime()))
skip_count = hparams.batch_size * hparams.epoch_step
utils.print_out("# Init train iterator, skipping %d elements" % skip_count)
train_sess.run(train_graph.iterator.initializer,
feed_dict={train_graph.skip_count_placeholder: skip_count})
```
> 请注意,默认情况下,训练将每 1,000 次迭代保存模型。如果需要,您可以在超参数中更改此设置。目前,训练此模型并保存最新的五个模型占用大约 2 GB 的硬盘空间。
1. 以下代码将开始模型的训练和评估。训练的重要部分是在循环的最开始(前三分之一)。其余代码专门用于评估,从样本推断和保存模型,如下所示:
```py
# Run training
while global_step < hparams.num_train_steps:
start_time = time.time()
try:
step_result = loaded_train_model.train(train_sess)
(_, step_loss, step_predict_count, step_summary, global_step, step_word_count,
batch_size, __, ___) = step_result
hparams.epoch_step += 1
except tf.errors.OutOfRangeError:
# Next Epoch
hparams.epoch_step = 0
utils.print_out("# Finished an epoch, step %d. Perform external evaluation" % global_step)
train.run_sample_decode(infer_graph,
infer_sess,
hparams.out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
infer_sess,
hparams.out_dir,
hparams,
summary_writer)
train_sess.run(train_graph.iterator.initializer, feed_dict={train_graph.skip_count_placeholder: 0})
continue
summary_writer.add_summary(step_summary, global_step)
# Statistics
step_time += (time.time() - start_time)
checkpoint_loss += (step_loss * batch_size)
checkpoint_predict_count += step_predict_count
checkpoint_total_count += float(step_word_count)
# print statistics
if global_step - last_stats_step >= hparams.steps_per_stats:
last_stats_step = global_step
avg_step_time = step_time / hparams.steps_per_stats
train_ppl = utils.safe_exp(checkpoint_loss / checkpoint_predict_count)
speed = checkpoint_total_count / (1000 * step_time)
utils.print_out(" global step %d lr %g "
"step-time %.2fs wps %.2fK ppl %.2f %s" %
(global_step,
loaded_train_model.learning_rate.eval(session=train_sess),
avg_step_time, speed, train_ppl, train._get_best_results(hparams)))
if math.isnan(train_ppl):
break
# Reset timer and loss.
step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
checkpoint_total_count = 0.0
if global_step - last_eval_step >= steps_per_eval:
last_eval_step = global_step
utils.print_out("# Save eval, global step %d" % global_step)
utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl)
# Save checkpoint
loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)
# Evaluate on dev/test
train.run_sample_decode(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_ppl, test_ppl = train.run_internal_eval(eval_graph,
eval_sess,
out_dir,
hparams,
summary_writer)
if global_step - last_external_eval_step >= steps_per_external_eval:
last_external_eval_step = global_step
# Save checkpoint
loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)
train.run_sample_decode(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer,
sample_src_data,
sample_tgt_data)
dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
infer_sess,
out_dir,
hparams,
summary_writer)
```
## 工作原理
对于这个秘籍,我们使用 TensorFlow 内置的序列到序列模型从英语翻译成德语。
由于我们没有为我们的测试句子提供完美的翻译,因此还有改进的余地。如果我们训练时间更长,并且可能组合一些桶(每个桶中有更多的训练数据),我们可能能够改进我们的翻译。
## 更多
在 Many Things 网站上托管了其他类似的双语句子数据集( [http://www.manythings.org/anki/](http://www.manythings.org/anki/) )。您可以随意替换任何吸引您的语言数据集。
- TensorFlow 入门
- 介绍
- TensorFlow 如何工作
- 声明变量和张量
- 使用占位符和变量
- 使用矩阵
- 声明操作符
- 实现激活函数
- 使用数据源
- 其他资源
- TensorFlow 的方式
- 介绍
- 计算图中的操作
- 对嵌套操作分层
- 使用多个层
- 实现损失函数
- 实现反向传播
- 使用批量和随机训练
- 把所有东西结合在一起
- 评估模型
- 线性回归
- 介绍
- 使用矩阵逆方法
- 实现分解方法
- 学习 TensorFlow 线性回归方法
- 理解线性回归中的损失函数
- 实现 deming 回归
- 实现套索和岭回归
- 实现弹性网络回归
- 实现逻辑回归
- 支持向量机
- 介绍
- 使用线性 SVM
- 简化为线性回归
- 在 TensorFlow 中使用内核
- 实现非线性 SVM
- 实现多类 SVM
- 最近邻方法
- 介绍
- 使用最近邻
- 使用基于文本的距离
- 使用混合距离函数的计算
- 使用地址匹配的示例
- 使用最近邻进行图像识别
- 神经网络
- 介绍
- 实现操作门
- 使用门和激活函数
- 实现单层神经网络
- 实现不同的层
- 使用多层神经网络
- 改进线性模型的预测
- 学习玩井字棋
- 自然语言处理
- 介绍
- 使用词袋嵌入
- 实现 TF-IDF
- 使用 Skip-Gram 嵌入
- 使用 CBOW 嵌入
- 使用 word2vec 进行预测
- 使用 doc2vec 进行情绪分析
- 卷积神经网络
- 介绍
- 实现简单的 CNN
- 实现先进的 CNN
- 重新训练现有的 CNN 模型
- 应用 StyleNet 和 NeuralStyle 项目
- 实现 DeepDream
- 循环神经网络
- 介绍
- 为垃圾邮件预测实现 RNN
- 实现 LSTM 模型
- 堆叠多个 LSTM 层
- 创建序列到序列模型
- 训练 Siamese RNN 相似性度量
- 将 TensorFlow 投入生产
- 介绍
- 实现单元测试
- 使用多个执行程序
- 并行化 TensorFlow
- 将 TensorFlow 投入生产
- 生产环境 TensorFlow 的一个例子
- 使用 TensorFlow 服务
- 更多 TensorFlow
- 介绍
- 可视化 TensorBoard 中的图
- 使用遗传算法
- 使用 k 均值聚类
- 求解常微分方程组
- 使用随机森林
- 使用 TensorFlow 和 Keras