##一、导数概念
#### 导数的定义
差商的极限
#### 左导数与右导数
#### 函数在一点处可导的充分必要条件
左右导数存在
#### 导数的几何意义与物理意义
切线的斜率
瞬时速度
#### 可导与连续的关系
可导=》连续, 可导必连续,反之不然
#### 导函数
#### 高阶导数
##二、导数基本公式与求导法则
#### 基本初等函数的导数公式
#### 导数的四则运算法则
```[math]
[u(x)\pm v(x)]' = u'(x) \pm v'(x)
```
```[math]
```
```[math]
```
```[math]
```
```[math]
```
#### 反函数的求导法则
反函数的导数等于原函数导数的倒数。
#### 复合函数的求导法则
#### 由方程确定的隐函数的导数
#### 由参数方程确定的函数的导数
#### 左右导数
#### 对数求导法
##三、高阶导数
#### 求高阶导数的莱布尼兹公式
#### 直接、间接求高阶导数的方法
##四、微分的概念
#### 微分
`$ f'(x_0) \Delta x $`
可导 《=》 可微
导数也称微商
#### 微分的几何意义
#### 微分与导数的关系
#### 微分运算法则
#### 一阶微分在近似计算中的应用
## 五、曲率
#### 弧微分
#### 曲率的概念与计算
#### 曲率半径与曲率圆
- 空白目录
- 第一篇 高等数学
- 第一章
- 第一节 函数
- 第二节 极限
- 第三节 连续
- 第二章 一元函数微分学
- 第一节 导数与微分
- 第二节 微分中值定理及导数的应用
- 第三章 一元函数积分学
- 第一节 不定积分
- 第二节 定积分
- 第四章 向量代数与空间解析几何
- 第一节 向量代数
- 第二节 曲面与平面
- 第三节 曲线与直线
- 第五章 多元函数微分学
- 第一节 多元函数微分学
- 第二节 多元函数微分学的应用
- 第六章 多元函数积分学
- 第一章 重积分
- 第二章 曲线积分与曲面积分
- 第七章 无穷级数
- 第一节 数项级数
- 第二节 幂级数
- 第三节 傅里叶级数
- 第八章 常微分方程
- 第一节 微分方程的基本概念
- 第二节 一阶微分方程
- 第三节 高阶微分方程
- 第二篇 线性代数
- 第一章 行列式
- 第一节 n阶行列式的概念
- 第二节 行列式的性质
- 第三节 克莱姆法则
- 第二章 矩阵
- 第一节 矩阵的概念
- 第二节 矩阵的运算
- 第三节 矩阵的分块
- 第四节 矩阵的初等变换
- 第五节 矩阵的秩
- 第三章 向量
- 第一节 向量组及其线性相关性
- 第二节 向量组的秩
- 第三节 向量空间
- 第四节 n维欧几里得空间
- 第四章 线性方程组
- 第一节 线性方程组的基本概念
- 第二节 线性方程组的消元法
- 第三节 线性方程组解的结构
- 第五章 矩阵的相似化简
- 第一节 特征值与特征向量
- 第二节 矩阵的相似对角化
- 第三节 实对称矩阵的对角化
- 第六章 二次型
- 第一节 二次型及其矩阵表示
- 第二节 二次型的标准形
- 第三节 正定二次型
- 第三篇 概率论与数理统计
- 第一章 概率论的基本概念
- 第一节 样本空间
- 第二节 频率与概率
- 第三节 等可能概型
- 第四节 条件概率
- 第五节 独立性
- 第二章 随机变量及其分布
- 第一节 随机变量及其分布函数
- 第二节 离散型随机变量
- 第三节 连续型随机变量
- 第四节 随机变量的函数的分布
- 第三章 多维随机变量及其分布
- 第一节 多维随机变量
- 第二节 二位离散型随机变量
- 第三节 二维连续型随机变量
- 第四节 相互独立的随机变量
- 第五节 两个随机变量的函数的分布
- 第四章 随机变量的数字特征
- 第一节 数学期望与方差
- 第二节 协方差、相关系数、矩、协方差矩阵
- 第五章 大数定律与中心极限定理
- 第一节 大数定律
- 第二节 中心极限定理
- 第六章 样本及抽样分布
- 第一节 随机样本、直方图和箱线图
- 第二节 抽样分布
- 第七章 参数统计
- 第一节 点估计
- 第二节 区间估计
- 第八章 假设检验
- 第一节 假设检验
- 第二节 正态总体均值的假设检验
- 第三节 正态总体方差的假设检验
- 第四节 分布拟合检验
- 参考
- 希腊字母渊源、发展及读法
- KaTex
- 微积分公式
- 三角函数
- 导数公式
- 极限
- 概率论