# 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
> 原文: [https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/](https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/)
超参数优化是深度学习的重要组成部分。
众所周知的原因之一是神经网络很难配置,并且要设置很多参数,最重要的是,单个模型的训练速度可能非常慢。
在这篇文章中,您将了解如何使用 scikit-learn python 机器学习库中的网格搜索功能来调整 Keras 深度学习模型的超参数。
阅读这篇文章后你会知道:
* 如何封装 Keras 模型用于 scikit-learn 以及如何使用网格搜索。
* 如何网格搜索常见的神经网络参数,如学习率,dropout率,迭代次数和神经元数量。
* 如何在自己的项目中定义自己的超参数调整实验。
让我们开始吧!
* **2016 年 11 月更新**:修复了在代码示例中显示网格搜索结果的小问题。
* **2016 年 10 月更新**:更新了 Keras 1.1.0,TensorFlow 0.10.0 和 scikit-learn v0.18 的示例。
* **2017 年 3 月更新**:更新了 Keras 2.0.2,TensorFlow 1.0.1 和 Theano 0.9.0 的示例。
* **2017 年 9 月更新**:更新了使用 Keras 2“epochs”代替 Keras 1“nb_epochs”的示例。
* **更新 March / 2018** :添加了备用链接以下载数据集,因为原始图像已被删除。
![How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras](https://img.kancloud.cn/75/57/755758e281040efcee1bb1ebdc9a10b9_640x359.png)
照片由 [3V Photo](https://www.flickr.com/photos/107439982@N02/10635372184/)提供 ,并保留所属权利。
## 概述
在这篇文章中,我想向您展示如何使用 scikit-learn 网格搜索功能,并为您提供一组示例,您可以将这些示例复制并粘贴到您自己的项目中作为学习的起点。
以下是我们将要讨论的主题列表:
1. 如何在 scikit-learn 中使用 Keras 模型。
2. 如何在 scikit-learn 中使用网格搜索。
3. 如何调整批量大小和训练迭代次数。
4. 如何调整优化算法。
5. 如何调整学习率和冲量单元。
6. 如何调整网络权重参数初始化。
7. 如何调整激活函数。
8. 如何调节dropout正则化。
9. 如何调整隐藏层中的神经元数量。
## 如何在 scikit-learn 中使用 Keras 模型
Keras 模型可以通过 **KerasClassifier** 或 **KerasRegressor** 类封装来使用 scikit-learn。
要使用这些封装器,您必须定义一个创建并返回 Keras 顺序模型的函数,然后在构造 **KerasClassifier** 类时将此函数传递给 **build_fn** 参数。
例如:
```py
def create_model():
...
return model
model = KerasClassifier(build_fn=create_model)
```
**KerasClassifier** 类的构造函数可以使用传递给 `model.fit()`的调用的默认参数,例如迭代数和批量大小。
例如:
```py
def create_model():
...
return model
model = KerasClassifier(build_fn=create_model, epochs=10)
```
**KerasClassifier** 类的构造函数也可以采用传递给自定义 `create_model()`函数的新参数。这些新参数也必须在 `create_model()`函数的签名中使用默认参数进行定义。
例如:
```py
def create_model(dropout_rate=0.0):
...
return model
model = KerasClassifier(build_fn=create_model, dropout_rate=0.2)
```
您可以在 Keras API 文档中了解有关 [scikit-learn 封装器的更多信息。](http://keras.io/scikit-learn-api/)
## 如何在 scikit-learn 中使用网格搜索
网格搜索是一种模型超参数优化技术。
在 scikit-learn 中,这种技术由 **GridSearchCV** 类提供。
构造此类时,必须提供一个超参数字典,以便在 **param_grid** 参数中进行评估,这是模型参数名称和要尝试的值所组成数组的一种映射。
默认情况下,精度是需要优化的分数,但其他评分标准也可以在 **GridSearchCV** 构造函数的**分数**参数中指定。
默认情况下,网格搜索仅使用一个线程,通过将 **GridSearchCV** 构造函数中的 **n_jobs** 参数设置为-1,该进程将使用计算机上的所有计算资源,根据您的 Keras 后端,这种方法可能会干扰主要的神经网络训练过程。
然后,**GridSearchCV**流程将为每种参数组合构建和评估一个模型。 尽管可以通过为**GridSearchCV**构造函数指定cv参数来覆盖交叉验证,但是交叉验证用于评估每个单独的模型,并且使用默认的三折交叉验证。
下面是定义简单网格搜索的示例:
```py
param_grid = dict(epochs=[10,20,30])
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
```
完成后,您可以在 `grid.fit()`返回的结果对象中访问网格搜索的结果。 **best_score_** 成员提供对优化过程中观察到的最佳分数的访问, 并且**best_params_** 描述了获得最佳结果的参数组合。
您可以在 scikit-learn API 文档中了解有关 [GridSearchCV 类的更多信息。](http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV)
## 问题描述
既然我们知道如何使用 scras 模型学习 keras 模型以及如何在 scikit-learn 中使用网格搜索,那么让我们看看一堆例子。
所有例子都将在一个名为 [Pima Indians 糖尿病分类数据集](http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes)的小型标准机器学习数据集上进行演示。这是一个包含所有数字属性的小型数据集,易于使用。
1. [下载数据集](http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data)并将其直接放入您当前正在使用的名称 **pima-indians-diabetes.csv** (更新:[从这里下载](https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv))。
在我们继续本文中的示例时,我们将汇总最佳参数。这不是网格搜索的最佳方式,因为参数可以交互,但它有利于演示目的。
### 并行化网格搜索的注意事项
所有示例都配置为使用并行性( **n_jobs = -1** ).
如果您收到如下错误:
```py
INFO (theano.gof.compilelock): Waiting for existing lock by process '55614' (I am process '55613')
INFO (theano.gof.compilelock): To manually release the lock, delete ...
```
终止进程并更改代码以不并行执行网格搜索,设置 **n_jobs = 1** 。
## 如何调整批量大小和迭代次数
在第一个简单的例子中,我们考虑调整批大小和网络拟合时的迭代次数。
[迭代梯度下降](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Iterative_method)中的批大小是在更新权重之前向网络显示的模式数,它也是网络训练的优化,定义了一次读取多少个模式并保留在内存中。
迭代次数是训练期间整个训练数据集显示给网络的次数,一些网络对批量大小敏感,例如 LSTM 递归神经网络和卷积神经网络。
在这里,我们将评估一套不同的迷你批量大小,从 10 到 100,并且将其步长设为 20。
完整的代码清单如下。
```py
# 使用sklearn网格化搜索批大小和迭代次数
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
# KerasClassifier所需的创建模型的函数
def create_model():
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, verbose=0)
# 定义为网络搜索模式
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
param_grid = dict(batch_size=batch_size, epochs=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 结果汇总
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出:
```py
Best: 0.686198 using {'epochs': 100, 'batch_size': 20}
0.348958 (0.024774) with: {'epochs': 10, 'batch_size': 10}
0.348958 (0.024774) with: {'epochs': 50, 'batch_size': 10}
0.466146 (0.149269) with: {'epochs': 100, 'batch_size': 10}
0.647135 (0.021236) with: {'epochs': 10, 'batch_size': 20}
0.660156 (0.014616) with: {'epochs': 50, 'batch_size': 20}
0.686198 (0.024774) with: {'epochs': 100, 'batch_size': 20}
0.489583 (0.075566) with: {'epochs': 10, 'batch_size': 40}
0.652344 (0.019918) with: {'epochs': 50, 'batch_size': 40}
0.654948 (0.027866) with: {'epochs': 100, 'batch_size': 40}
0.518229 (0.032264) with: {'epochs': 10, 'batch_size': 60}
0.605469 (0.052213) with: {'epochs': 50, 'batch_size': 60}
0.665365 (0.004872) with: {'epochs': 100, 'batch_size': 60}
0.537760 (0.143537) with: {'epochs': 10, 'batch_size': 80}
0.591146 (0.094954) with: {'epochs': 50, 'batch_size': 80}
0.658854 (0.054904) with: {'epochs': 100, 'batch_size': 80}
0.402344 (0.107735) with: {'epochs': 10, 'batch_size': 100}
0.652344 (0.033299) with: {'epochs': 50, 'batch_size': 100}
0.542969 (0.157934) with: {'epochs': 100, 'batch_size': 100}
```
我们可以看到批大小为20,迭代次数为100时达到了 68%准确度的最佳结果。
## 如何调整训练优化算法
Keras 提供一套不同的最先进的优化算法。
在此示例中,我们调整用于训练网络的优化算法,每个算法都使用默认参数。
这是一个奇怪的例子,因为通常您会先选择一种方法,而不是专注于调整问题的参数(例如,参见下一个例子)。
在这里,我们将评估 Keras API 支持的[优化算法套件。](http://keras.io/optimizers/)
完整的代码清单如下。
```py
# 使用sklearn网格化搜索批大小和迭代次数
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
# KerasClassifier类所需要的创建模型的函数
def create_model(optimizer='adam'):
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# 将数据集分割为输入变量和输出变量
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# 定义为网格化搜索参数
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
param_grid = dict(optimizer=optimizer)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 汇总结果
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.704427 using {'optimizer': 'Adam'}
0.348958 (0.024774) with: {'optimizer': 'SGD'}
0.348958 (0.024774) with: {'optimizer': 'RMSprop'}
0.471354 (0.156586) with: {'optimizer': 'Adagrad'}
0.669271 (0.029635) with: {'optimizer': 'Adadelta'}
0.704427 (0.031466) with: {'optimizer': 'Adam'}
0.682292 (0.016367) with: {'optimizer': 'Adamax'}
0.703125 (0.003189) with: {'optimizer': 'Nadam'}
```
结果表明 ADAM 优化算法是最好的,准确度大约为 70%。
## 如何调整学习率和冲量单元
通常会预先选择优化算法来训练您的网络并调整其参数。
到目前为止,最常见的优化算法是普通的老式[随机梯度下降](http://keras.io/optimizers/#sgd)(SGD),因为它非常清晰。在这个例子中,我们将研究优化 SGD 学习率和冲量单元。
学习率控制在每次迭代结束时更新权重的程度,并且冲量单元控制允许上一个更新影响当前权重更新的量。
我们将尝试一套小的标准学习率和 0.2 到 0.8 的冲量单元,步长为 0.2,以及 0.9(因为它在实践中可能是一个受欢迎的值)。
通常,在这样的优化中也包括迭代次数是个好主意,因为每个迭代学习量(学习率),每次迭代的更新数量(批量大小)和迭代次数存在依赖关系。
完整的代码清单如下。
```py
# 使用sklearn网格化搜索学习率和冲量单元
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import SGD
#KerasClassifier类所需要的创建模型的函数
def create_model(learn_rate=0.01, momentum=0):
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# 编译模型
optimizer = SGD(lr=learn_rate, momentum=momentum)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# load dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# 将数据划分为输入变量和输出变量
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# 定义网格化搜索参数
learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]
param_grid = dict(learn_rate=learn_rate, momentum=momentum)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 结果汇总
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.680990 using {'learn_rate': 0.01, 'momentum': 0.0}
0.348958 (0.024774) with: {'learn_rate': 0.001, 'momentum': 0.0}
0.348958 (0.024774) with: {'learn_rate': 0.001, 'momentum': 0.2}
0.467448 (0.151098) with: {'learn_rate': 0.001, 'momentum': 0.4}
0.662760 (0.012075) with: {'learn_rate': 0.001, 'momentum': 0.6}
0.669271 (0.030647) with: {'learn_rate': 0.001, 'momentum': 0.8}
0.666667 (0.035564) with: {'learn_rate': 0.001, 'momentum': 0.9}
0.680990 (0.024360) with: {'learn_rate': 0.01, 'momentum': 0.0}
0.677083 (0.026557) with: {'learn_rate': 0.01, 'momentum': 0.2}
0.427083 (0.134575) with: {'learn_rate': 0.01, 'momentum': 0.4}
0.427083 (0.134575) with: {'learn_rate': 0.01, 'momentum': 0.6}
0.544271 (0.146518) with: {'learn_rate': 0.01, 'momentum': 0.8}
0.651042 (0.024774) with: {'learn_rate': 0.01, 'momentum': 0.9}
0.651042 (0.024774) with: {'learn_rate': 0.1, 'momentum': 0.0}
0.651042 (0.024774) with: {'learn_rate': 0.1, 'momentum': 0.2}
0.572917 (0.134575) with: {'learn_rate': 0.1, 'momentum': 0.4}
0.572917 (0.134575) with: {'learn_rate': 0.1, 'momentum': 0.6}
0.651042 (0.024774) with: {'learn_rate': 0.1, 'momentum': 0.8}
0.651042 (0.024774) with: {'learn_rate': 0.1, 'momentum': 0.9}
0.533854 (0.149269) with: {'learn_rate': 0.2, 'momentum': 0.0}
0.427083 (0.134575) with: {'learn_rate': 0.2, 'momentum': 0.2}
0.427083 (0.134575) with: {'learn_rate': 0.2, 'momentum': 0.4}
0.651042 (0.024774) with: {'learn_rate': 0.2, 'momentum': 0.6}
0.651042 (0.024774) with: {'learn_rate': 0.2, 'momentum': 0.8}
0.651042 (0.024774) with: {'learn_rate': 0.2, 'momentum': 0.9}
0.455729 (0.146518) with: {'learn_rate': 0.3, 'momentum': 0.0}
0.455729 (0.146518) with: {'learn_rate': 0.3, 'momentum': 0.2}
0.455729 (0.146518) with: {'learn_rate': 0.3, 'momentum': 0.4}
0.348958 (0.024774) with: {'learn_rate': 0.3, 'momentum': 0.6}
0.348958 (0.024774) with: {'learn_rate': 0.3, 'momentum': 0.8}
0.348958 (0.024774) with: {'learn_rate': 0.3, 'momentum': 0.9}
```
我们可以看到相对 SGD 在这个问题上性能不是很好,但是使用 0.01 的学习率和 0.0 的冲量单元获得了68%的精确度
## 如何调整网络权重初始化
神经网络权重初始化过去很简单:使用较小的随机值。
现在有一套不同的技术可供选择。 [Keras 提供清单](http://keras.io/initializations/)。
在此示例中,我们将通过评估所有可用技术来调整网络权重初始化的选择。
我们将在每一层使用相同的权重初始化方法,理想情况下,根据每层使用的激活函数,使用不同的权重初始化方案可能更好,在下面的示例中,因为是二元分类预测,我们使用线性修正单元作为隐藏层,并且我们使用 sigmoid 作为输出层。
完整的代码清单如下。
```py
# 使用sklearn网格化搜索权重参数初始化
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
# KerasClassifier需要的创建模型的函数
def create_model(init_mode='uniform'):
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer=init_mode, activation='relu'))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# 将输入化为·输入变量X和输出变量y
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
#定义网格化搜索的参数
init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform']
param_grid = dict(init_mode=init_mode)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 汇总结果
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.720052 using {'init_mode': 'uniform'}
0.720052 (0.024360) with: {'init_mode': 'uniform'}
0.348958 (0.024774) with: {'init_mode': 'lecun_uniform'}
0.712240 (0.012075) with: {'init_mode': 'normal'}
0.651042 (0.024774) with: {'init_mode': 'zero'}
0.700521 (0.010253) with: {'init_mode': 'glorot_normal'}
0.674479 (0.011201) with: {'init_mode': 'glorot_uniform'}
0.661458 (0.028940) with: {'init_mode': 'he_normal'}
0.678385 (0.004872) with: {'init_mode': 'he_uniform'}
```
我们可以看到,使用均匀权重初始化方案实现了最佳结果,能够达到大概72%的性能。
## 如何调整神经元激活函数
激活功能控制各个神经元的非线性以及何时触发。
通常,线性修正激活函数是最流行的,过去则是 sigmoid 和 tanh 函数,这些函数可能仍然更适合于不同的问题。
在这个例子中,我们将评估 Keras 中可用的[不同激活函数套件。我们将仅在隐藏层中使用这些函数,因为我们在输出中需要 sigmoid 激活函数以用于二元分类问题。](http://keras.io/activations/)
通常,将数据准备到不同传递函数的范围是一个好主意,在这种情况下我们不需要这样做。
完整的代码清单如下。
```py
# 使用sklearn网格化搜索激活函数
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
# KerasClassifier所需要的创建模型函数
def create_model(activation='relu'):
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation=activation))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# 定义网格化搜索参数
activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']
param_grid = dict(activation=activation)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 结果汇总
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.722656 using {'activation': 'linear'}
0.649740 (0.009744) with: {'activation': 'softmax'}
0.720052 (0.032106) with: {'activation': 'softplus'}
0.688802 (0.019225) with: {'activation': 'softsign'}
0.720052 (0.018136) with: {'activation': 'relu'}
0.691406 (0.019401) with: {'activation': 'tanh'}
0.680990 (0.009207) with: {'activation': 'sigmoid'}
0.691406 (0.014616) with: {'activation': 'hard_sigmoid'}
0.722656 (0.003189) with: {'activation': 'linear'}
```
令人惊讶的是(至少对我而言),“线性”激活功能获得了最佳结果,精确度约为 72%。
## 如何调整dropout正则化
在这个例子中,我们将研究调整正则化的dropout率,以限制过拟合并提高模型的推广能力。
为了获得良好的结果,dropout最好与权重约束相结合,例如最大范数约束。
有关在 Keras 深度学习模型中使用 dropout 的更多信息,请参阅帖子:
* [具有 Keras 的深度学习模型中的丢失正则化](http://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/)
这涉及拟合dropout率和权重约束,们将尝试 0.0 到 0.9 之间的dropout失百分比(1.0 没有意义)和 0 到 5 之间的 maxnorm 权重约束值。
完整的代码清单如下。
```py
#使用sklearn网格化搜索dropout率
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.constraints import maxnorm
# KerasClassifier需要的创建模型的函数
def create_model(dropout_rate=0.0, weight_constraint=0):
# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='linear', kernel_constraint=maxnorm(weight_constraint)))
model.add(Dropout(dropout_rate))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# 定义网格化搜索参数
weight_constraint = [1, 2, 3, 4, 5]
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
param_grid = dict(dropout_rate=dropout_rate, weight_constraint=weight_constraint)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 结果汇总
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.723958 using {'dropout_rate': 0.2, 'weight_constraint': 4}
0.696615 (0.031948) with: {'dropout_rate': 0.0, 'weight_constraint': 1}
0.696615 (0.031948) with: {'dropout_rate': 0.0, 'weight_constraint': 2}
0.691406 (0.026107) with: {'dropout_rate': 0.0, 'weight_constraint': 3}
0.708333 (0.009744) with: {'dropout_rate': 0.0, 'weight_constraint': 4}
0.708333 (0.009744) with: {'dropout_rate': 0.0, 'weight_constraint': 5}
0.710937 (0.008438) with: {'dropout_rate': 0.1, 'weight_constraint': 1}
0.709635 (0.007366) with: {'dropout_rate': 0.1, 'weight_constraint': 2}
0.709635 (0.007366) with: {'dropout_rate': 0.1, 'weight_constraint': 3}
0.695312 (0.012758) with: {'dropout_rate': 0.1, 'weight_constraint': 4}
0.695312 (0.012758) with: {'dropout_rate': 0.1, 'weight_constraint': 5}
0.701823 (0.017566) with: {'dropout_rate': 0.2, 'weight_constraint': 1}
0.710938 (0.009568) with: {'dropout_rate': 0.2, 'weight_constraint': 2}
0.710938 (0.009568) with: {'dropout_rate': 0.2, 'weight_constraint': 3}
0.723958 (0.027126) with: {'dropout_rate': 0.2, 'weight_constraint': 4}
0.718750 (0.030425) with: {'dropout_rate': 0.2, 'weight_constraint': 5}
0.721354 (0.032734) with: {'dropout_rate': 0.3, 'weight_constraint': 1}
0.707031 (0.036782) with: {'dropout_rate': 0.3, 'weight_constraint': 2}
0.707031 (0.036782) with: {'dropout_rate': 0.3, 'weight_constraint': 3}
0.694010 (0.019225) with: {'dropout_rate': 0.3, 'weight_constraint': 4}
0.709635 (0.006639) with: {'dropout_rate': 0.3, 'weight_constraint': 5}
0.704427 (0.008027) with: {'dropout_rate': 0.4, 'weight_constraint': 1}
0.717448 (0.031304) with: {'dropout_rate': 0.4, 'weight_constraint': 2}
0.718750 (0.030425) with: {'dropout_rate': 0.4, 'weight_constraint': 3}
0.718750 (0.030425) with: {'dropout_rate': 0.4, 'weight_constraint': 4}
0.722656 (0.029232) with: {'dropout_rate': 0.4, 'weight_constraint': 5}
0.720052 (0.028940) with: {'dropout_rate': 0.5, 'weight_constraint': 1}
0.703125 (0.009568) with: {'dropout_rate': 0.5, 'weight_constraint': 2}
0.716146 (0.029635) with: {'dropout_rate': 0.5, 'weight_constraint': 3}
0.709635 (0.008027) with: {'dropout_rate': 0.5, 'weight_constraint': 4}
0.703125 (0.011500) with: {'dropout_rate': 0.5, 'weight_constraint': 5}
0.707031 (0.017758) with: {'dropout_rate': 0.6, 'weight_constraint': 1}
0.701823 (0.018688) with: {'dropout_rate': 0.6, 'weight_constraint': 2}
0.701823 (0.018688) with: {'dropout_rate': 0.6, 'weight_constraint': 3}
0.690104 (0.027498) with: {'dropout_rate': 0.6, 'weight_constraint': 4}
0.695313 (0.022326) with: {'dropout_rate': 0.6, 'weight_constraint': 5}
0.697917 (0.014382) with: {'dropout_rate': 0.7, 'weight_constraint': 1}
0.697917 (0.014382) with: {'dropout_rate': 0.7, 'weight_constraint': 2}
0.687500 (0.008438) with: {'dropout_rate': 0.7, 'weight_constraint': 3}
0.704427 (0.011201) with: {'dropout_rate': 0.7, 'weight_constraint': 4}
0.696615 (0.016367) with: {'dropout_rate': 0.7, 'weight_constraint': 5}
0.680990 (0.025780) with: {'dropout_rate': 0.8, 'weight_constraint': 1}
0.699219 (0.019401) with: {'dropout_rate': 0.8, 'weight_constraint': 2}
0.701823 (0.015733) with: {'dropout_rate': 0.8, 'weight_constraint': 3}
0.684896 (0.023510) with: {'dropout_rate': 0.8, 'weight_constraint': 4}
0.696615 (0.017566) with: {'dropout_rate': 0.8, 'weight_constraint': 5}
0.653646 (0.034104) with: {'dropout_rate': 0.9, 'weight_constraint': 1}
0.677083 (0.012075) with: {'dropout_rate': 0.9, 'weight_constraint': 2}
0.679688 (0.013902) with: {'dropout_rate': 0.9, 'weight_constraint': 3}
0.669271 (0.017566) with: {'dropout_rate': 0.9, 'weight_constraint': 4}
0.669271 (0.012075) with: {'dropout_rate': 0.9, 'weight_constraint': 5}
```
我们可以看到,20%的dropout率和 4 的最大权重约束能够达到最佳精确度约为 72%。
## 如何调整隐藏层中的神经元数量
层中神经元的数量是调整的重要参数。通常,层中的神经元的数量控制网络的表示能力,至少在拓扑中的那个点处。
此外,通常,足够大的单层网络可以近似于任何其他神经网络,[至少在理论上](https://en.wikipedia.org/wiki/Universal_approximation_theorem)。
在这个例子中,我们将研究调整单个隐藏层中的神经元数量,我们将以 5 的步长尝试 1 到 30 的值。
较大的网络需要更多的训练,并且至少批大小和迭代次数应理想地用神经元的数量来优化。
完整的代码清单如下。
```py
# 使用sklearn网格化搜索神经元数量
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.constraints import maxnorm
# KerasClassifier所需要的创建模型的函数
def create_model(neurons=1):
# 创建模型
model = Sequential()
model.add(Dense(neurons, input_dim=8, kernel_initializer='uniform', activation='linear', kernel_constraint=maxnorm(4)))
model.add(Dropout(0.2))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 固定随机种子再现性
seed = 7
numpy.random.seed(seed)
# 加载数据集
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
#将数据集划分为输入变量X和输出变量y
X = dataset[:,0:8]
Y = dataset[:,8]
# 创建模型
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# 定义网格化搜索的参数
neurons = [1, 5, 10, 15, 20, 25, 30]
param_grid = dict(neurons=neurons)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# 结果汇总
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
```
运行此示例将生成以下输出。
```py
Best: 0.714844 using {'neurons': 5}
0.700521 (0.011201) with: {'neurons': 1}
0.714844 (0.011049) with: {'neurons': 5}
0.712240 (0.017566) with: {'neurons': 10}
0.705729 (0.003683) with: {'neurons': 15}
0.696615 (0.020752) with: {'neurons': 20}
0.713542 (0.025976) with: {'neurons': 25}
0.705729 (0.008027) with: {'neurons': 30}
```
我们可以看到,在隐藏层中具有 5 个神经元的网络实现了最佳结果,精度约为 71%。
## 超参数优化提示
本节列出了调整神经网络超参数时要考虑的一些方便提示。
* **k 折交叉验证**:您可以看到本文中示例的结果显示出一些差异,使用默认的3折交叉验证,但是 k = 5 或 k = 10 可能更稳定,请仔细选择交叉验证配置以确保结果稳定。
* **回顾整个网格**:不要只关注最佳结果,检查整个结果网格并寻找支持配置决策的趋势。
* **并行化**:如果可以的话,使用你所有的核心,神经网络训练很慢,我们经常想尝试很多不同的参数,考虑搞砸很多 [AWS 实例](http://machinelearningmastery.com/develop-evaluate-large-deep-learning-models-keras-amazon-web-services/)。
* **使用数据集样本**:因为网络训练很慢,所以尝试在训练数据集的较小样本上训练它们,只是为了了解参数的一般方向而不是最佳配置。
* **从粗网格开始**:从粗粒度网格开始,一旦缩小范围,就可以缩放到更细粒度的网格。
* **不转移结果**:结果通常是特定于问题的。尝试在您看到的每个新问题上避免喜欢的配置。您在一个问题上发现的最佳结果不太可能转移到您的下一个项目,而是寻找更广泛的趋势,例如层数或参数之间的关系。
* **再现性是一个问题**:虽然我们在 NumPy 中为随机数生成器设置种子,但结果不是 100%可重复的,当网格搜索包装 Keras 模型时,重复性要高于本文中提供的内容。
## 摘要
在这篇文章中,您了解了如何使用 Keras 和 scikit-learn 在 Python 中调整深度学习网络的超参数。
具体来说,你学到了:
* 如何包装 Keras 模型用于 scikit-learn 以及如何使用网格搜索
* 如何为 Keras 模型网格搜索一套不同的标准神经网络参数
* 如何设计自己的超参数优化实验
你有调整大型神经网络超参数的经验吗?请在下面分享您的故事。
您对神经网络的超参数优化还是关于这篇文章有什么疑问?在评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程