# 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
> 原文: [https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/](https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/)
循环神经网络也可以用作生成模型。
这意味着除了用于预测模型(进行预测)之外,他们还可以学习问题的序列,然后为问题域生成全新的合理序列。
像这样的生成模型不仅可用于研究模型学习问题的程度,还可以了解有关问题领域本身的更多信息。
在这篇文章中,您将了解如何使用 Keras 中的 Python 中的 LSTM 循环神经网络逐个字符地创建文本的生成模型。
阅读这篇文章后你会知道:
* 在哪里下载免费的文本语料库,您可以使用它来训练文本生成模型。
* 如何将文本序列问题构建为循环神经网络生成模型。
* 如何开发 LSTM 以针对给定问题生成合理的文本序列。
让我们开始吧。
**注意**:LSTM 循环神经网络训练速度很慢,强烈建议您在 GPU 硬件上进行训练。您可以使用 Amazon Web Services 非常便宜地访问云中的 GPU 硬件,[请参阅此处的教程](http://machinelearningmastery.com/develop-evaluate-large-deep-learning-models-keras-amazon-web-services/)。
* **2016 年 10 月更新**:修复了代码中的一些小错误拼写错误。
* **2017 年 3 月更新**:更新了 Keras 2.0.2,TensorFlow 1.0.1 和 Theano 0.9.0 的示例。
![Text Generation With LSTM Recurrent Neural Networks in Python with Keras](img/ce1bbf908214dba8ac5ef35fd8c2b3e6.jpg)
用 Keras
在 Python 中使用 LSTM 循环神经网络生成文本 [Russ Sanderlin](https://www.flickr.com/photos/tearstone/5028273685/) ,保留一些权利。
## 问题描述:古腾堡项目
许多经典文本不再受版权保护。
这意味着您可以免费下载这些书籍的所有文本,并在实验中使用它们,例如创建生成模型。也许获取不受版权保护的免费书籍的最佳地点是 [Project Gutenberg](https://www.gutenberg.org) 。
在本教程中,我们将使用童年时代最喜欢的书作为数据集:[刘易斯卡罗尔的爱丽丝梦游仙境](https://www.gutenberg.org/ebooks/11)。
我们将学习字符之间的依赖关系和序列中字符的条件概率,这样我们就可以生成全新的原始字符序列。
这很有趣,我建议用 Project Gutenberg 的其他书重复这些实验,[这里是网站上最受欢迎的书籍列表](https://www.gutenberg.org/ebooks/search/%3Fsort_order%3Ddownloads)。
这些实验不仅限于文本,您还可以尝试其他 ASCII 数据,例如计算机源代码,LaTeX 中标记的文档,HTML 或 Markdown 等。
您可以[免费下载本书的 ASCII 格式](http://www.gutenberg.org/cache/epub/11/pg11.txt)(纯文本 UTF-8)全文,并将其放在工作目录中,文件名为 **wonderland.txt** 。
现在我们需要准备好数据集以进行建模。
Project Gutenberg 为每本书添加了标准页眉和页脚,这不是原始文本的一部分。在文本编辑器中打开文件并删除页眉和页脚。
标题很明显,以文字结尾:
```py
*** START OF THIS PROJECT GUTENBERG EBOOK ALICE'S ADVENTURES IN WONDERLAND ***
```
页脚是文本行后面的所有文本:
```py
THE END
```
您应该留下一个包含大约 3,330 行文本的文本文件。
## 开发小型 LSTM 循环神经网络
在本节中,我们将开发一个简单的 LSTM 网络,以学习 Alice in Wonderland 中的角色序列。在下一节中,我们将使用此模型生成新的字符序列。
让我们首先导入我们打算用来训练模型的类和函数。
```py
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
```
接下来,我们需要将书籍的 ASCII 文本加载到内存中,并将所有字符转换为小写,以减少网络必须学习的词汇量。
```py
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
```
既然本书已加载,我们必须准备数据以供神经网络建模。我们不能直接对字符进行建模,而是必须将字符转换为整数。
我们可以通过首先在书中创建一组所有不同的字符,然后创建每个字符到唯一整数的映射来轻松完成此操作。
```py
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
```
例如,书中唯一排序的小写字符列表如下:
```py
['\n', '\r', ' ', '!', '"', "'", '(', ')', '*', ',', '-', '.', ':', ';', '?', '[', ']', '_', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\xbb', '\xbf', '\xef']
```
您可以看到,我们可能会删除某些字符以进一步清理数据集,从而减少词汇量并可能改进建模过程。
现在已经加载了本书并准备了映射,我们可以总结数据集。
```py
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
```
将代码运行到此点会产生以下输出。
```py
Total Characters: 147674
Total Vocab: 47
```
我们可以看到这本书的字符数不到 150,000,当转换为小写时,网络词汇表中只有 47 个不同的字符供网络学习。远远超过字母表中的 26。
我们现在需要定义网络的训练数据。在训练过程中,如何选择拆分文本并将其暴露给网络,有很多灵活性。
在本教程中,我们将书本文本拆分为子序列,其长度固定为 100 个字符,任意长度。我们可以轻松地按句子分割数据并填充较短的序列并截断较长的序列。
网络的每个训练模式由 100 个时间步长组成,一个字符(X)后跟一个字符输出(y)。在创建这些序列时,我们一次一个字符地沿着整本书滑动这个窗口,允许每个角色从它前面的 100 个字符中学习(当然前 100 个字符除外)。
例如,如果序列长度为 5(为简单起见),则前两个训练模式如下:
```py
CHAPT -> E
HAPTE -> R
```
当我们将书分成这些序列时,我们使用我们之前准备的查找表将字符转换为整数。
```py
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
```
运行代码到这一点向我们展示了当我们将数据集拆分为网络的训练数据时,我们知道我们只有不到 150,000 个训练模式。这有意义,因为排除前 100 个字符,我们有一个训练模式来预测每个剩余的字符。
```py
Total Patterns: 147574
```
现在我们已经准备好了训练数据,我们需要对其进行转换,以便它适合与 Keras 一起使用。
首先,我们必须将输入序列列表转换为 LSTM 网络所期望的 _[样本,时间步长,特征]_ 形式。
接下来,我们需要将整数重新缩放到 0 到 1 的范围,以使默认情况下使用 sigmoid 激活函数的 LSTM 网络更容易学习模式。
最后,我们需要将输出模式(转换为整数的单个字符)转换为一个热编码。这样我们就可以配置网络来预测词汇表中 47 个不同字符中每个字符的概率(更容易表示),而不是试图强制它准确地预测下一个字符。每个 y 值都被转换为一个长度为 47 的稀疏向量,除了在模式所代表的字母(整数)的列中有 1 之外,它们都是零。
例如,当“n”(整数值 31)是一个热编码时,它看起来如下:
```py
[ 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0.
0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 0\. 1\. 0\. 0\. 0\. 0.
0\. 0\. 0\. 0\. 0\. 0\. 0\. 0.]
```
我们可以执行以下步骤。
```py
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
```
我们现在可以定义我们的 LSTM 模型。在这里,我们定义了一个具有 256 个内存单元的隐藏 LSTM 层。网络使用概率为 20 的丢失。输出层是密集层,使用 softmax 激活函数输出 0 和 1 之间的 47 个字符中的每一个的概率预测。
问题实际上是 47 个类的单个字符分类问题,因此被定义为优化日志损失(交叉熵),这里使用 ADAM 优化算法来提高速度。
```py
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
```
没有测试数据集。我们正在对整个训练数据集进行建模,以了解序列中每个字符的概率。
我们对训练数据集的最准确(分类准确性)模型不感兴趣。这将是一个完美预测训练数据集中每个角色的模型。相反,我们感兴趣的是最小化所选损失函数的数据集的概括。我们正在寻求在泛化和过度拟合之间取得平衡,但缺乏记忆。
网络训练缓慢(Nvidia K520 GPU 上每个迭代约 300 秒)。由于速度缓慢以及由于我们的优化要求,我们将使用模型检查点来记录每次在时期结束时观察到损失改善时的所有网络权重。我们将在下一节中使用最佳权重集(最低损失)来实例化我们的生成模型。
```py
# define the checkpoint
filepath="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
```
我们现在可以将模型与数据相匹配。在这里,我们使用适度数量的 20 个时期和 128 个模式的大批量大小。
```py
model.fit(X, y, epochs=20, batch_size=128, callbacks=callbacks_list)
```
完整性代码清单如下所示。
```py
# Small LSTM Network to Generate Text for Alice in Wonderland
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# define the checkpoint
filepath="weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(X, y, epochs=20, batch_size=128, callbacks=callbacks_list)
```
由于模型的随机性,您将看到不同的结果,并且因为很难为 LSTM 模型修复随机种子以获得 100%可重复的结果。这不是这个生成模型的关注点。
运行该示例后,您应该在本地目录中有许多权重检查点文件。
除了丢失值最小的那个之外,您可以删除它们。例如,当我运行这个例子时,下面是我实现的损失最小的检查点。
```py
weights-improvement-19-1.9435.hdf5
```
网络损失几乎每个时代都在减少,我预计网络可以从更多时代的训练中受益。
在下一节中,我们将介绍如何使用此模型生成新的文本序列。
## 使用 LSTM 网络生成文本
使用经过训练的 LSTM 网络生成文本相对简单。
首先,我们以完全相同的方式加载数据并定义网络,除了从检查点文件加载网络权重并且不需要训练网络。
```py
# load the network weights
filename = "weights-improvement-19-1.9435.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
```
此外,在准备将唯一字符映射到整数时,我们还必须创建一个反向映射,我们可以使用它将整数转换回字符,以便我们可以理解预测。
```py
int_to_char = dict((i, c) for i, c in enumerate(chars))
```
最后,我们需要实际做出预测。
使用 Keras LSTM 模型进行预测的最简单方法是首先以种子序列作为输入开始,生成下一个字符然后更新种子序列以在末尾添加生成的字符并修剪第一个字符。只要我们想要预测新字符(例如,长度为 1,000 个字符的序列),就重复该过程。
我们可以选择随机输入模式作为种子序列,然后在生成它们时打印生成的字符。
```py
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print "Seed:"
print "\"", ''.join([int_to_char[value] for value in pattern]), "\""
# generate characters
for i in range(1000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print "\nDone."
```
下面列出了使用加载的 LSTM 模型生成文本的完整代码示例,以确保完整性。
```py
# Load LSTM network and generate text
import sys
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers, and a reverse mapping
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2])))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
# load the network weights
filename = "weights-improvement-19-1.9435.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print "Seed:"
print "\"", ''.join([int_to_char[value] for value in pattern]), "\""
# generate characters
for i in range(1000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print "\nDone."
```
运行此示例首先输出所选的随机种子,然后输出生成的每个字符。
例如,下面是此文本生成器的一次运行的结果。随机种子是:
```py
be no mistake about it: it was neither more nor less than a pig, and she
felt that it would be quit
```
随机种子生成的文本(清理后用于演示)是:
```py
be no mistake about it: it was neither more nor less than a pig, and she
felt that it would be quit e aelin that she was a little want oe toiet
ano a grtpersent to the tas a little war th tee the tase oa teettee
the had been tinhgtt a little toiee at the cadl in a long tuiee aedun
thet sheer was a little tare gereen to be a gentle of the tabdit soenee
the gad ouw ie the tay a tirt of toiet at the was a little
anonersen, and thiu had been woite io a lott of tueh a tiie and taede
bot her aeain she cere thth the bene tith the tere bane to tee
toaete to tee the harter was a little tire the same oare cade an anl ano
the garee and the was so seat the was a little gareen and the sabdit,
and the white rabbit wese tilel an the caoe and the sabbit se teeteer,
and the white rabbit wese tilel an the cade in a lonk tfne the sabdi
ano aroing to tea the was sf teet whitg the was a little tane oo thete
the sabeit she was a little tartig to the tar tf tee the tame of the
cagd, and the white rabbit was a little toiee to be anle tite thete ofs
and the tabdit was the wiite rabbit, and
```
我们可以注意到有关生成文本的一些观察。
* 它通常符合原始文本中观察到的行格式,在新行之前少于 80 个字符。
* 字符被分成单词组,大多数组是实际的英语单词(例如“the”,“little”和“was”),但许多组不是(例如“lott”,“tiie”和“taede”)。
* 顺序中的一些词是有意义的(例如“_ 和白兔 _”),但许多词没有(例如“ _wese tilel_ ”)。
这本基于角色的本书模型产生这样的输出这一事实令人印象深刻。它让您了解 LSTM 网络的学习能力。
结果并不完美。在下一节中,我们将通过开发更大的 LSTM 网络来提高结果的质量。
## 更大的 LSTM 循环神经网络
我们得到了结果,但在上一节中没有出色的结果。现在,我们可以尝试通过创建更大的网络来提高生成文本的质量。
我们将内存单元的数量保持为 256,但添加第二层。
```py
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
```
我们还将更改检查点权重的文件名,以便我们可以区分此网络和之前的权重(通过在文件名中附加“更大”一词)。
```py
filepath="weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5"
```
最后,我们将训练时期的数量从 20 个增加到 50 个,并将批量大小从 128 个减少到 64 个,以便为网络提供更多的机会进行更新和学习。
完整代码清单如下所示。
```py
# Larger LSTM Network to Generate Text for Alice in Wonderland
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
# define the checkpoint
filepath="weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(X, y, epochs=50, batch_size=64, callbacks=callbacks_list)
```
运行此示例需要一些时间,每个时期至少 700 秒。
运行此示例后,您可能会损失大约 1.2。例如,我通过运行此模型获得的最佳结果存储在一个名称为的检查点文件中:
```py
weights-improvement-47-1.2219-bigger.hdf5
```
在 47 迭代实现亏损 1.2219。
与上一节一样,我们可以使用运行中的最佳模型来生成文本。
我们需要对上一节中的文本生成脚本进行的唯一更改是在网络拓扑的规范中以及从哪个文件中为网络权重设定种子。
完整性代码清单如下所示。
```py
# Load Larger LSTM network and generate text
import sys
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# load ascii text and covert to lowercase
filename = "wonderland.txt"
raw_text = open(filename).read()
raw_text = raw_text.lower()
# create mapping of unique chars to integers, and a reverse mapping
chars = sorted(list(set(raw_text)))
char_to_int = dict((c, i) for i, c in enumerate(chars))
int_to_char = dict((i, c) for i, c in enumerate(chars))
# summarize the loaded data
n_chars = len(raw_text)
n_vocab = len(chars)
print "Total Characters: ", n_chars
print "Total Vocab: ", n_vocab
# prepare the dataset of input to output pairs encoded as integers
seq_length = 100
dataX = []
dataY = []
for i in range(0, n_chars - seq_length, 1):
seq_in = raw_text[i:i + seq_length]
seq_out = raw_text[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
n_patterns = len(dataX)
print "Total Patterns: ", n_patterns
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
# normalize
X = X / float(n_vocab)
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# define the LSTM model
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='softmax'))
# load the network weights
filename = "weights-improvement-47-1.2219-bigger.hdf5"
model.load_weights(filename)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# pick a random seed
start = numpy.random.randint(0, len(dataX)-1)
pattern = dataX[start]
print "Seed:"
print "\"", ''.join([int_to_char[value] for value in pattern]), "\""
# generate characters
for i in range(1000):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(n_vocab)
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
sys.stdout.write(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print "\nDone."
```
运行此文本生成脚本的一个示例生成下面的输出。
随机选择的种子文本是:
```py
d herself lying on the bank, with her
head in the lap of her sister, who was gently brushing away s
```
生成的文本与种子(清理用于演示)是:
```py
herself lying on the bank, with her
head in the lap of her sister, who was gently brushing away
so siee, and she sabbit said to herself and the sabbit said to herself and the sood
way of the was a little that she was a little lad good to the garden,
and the sood of the mock turtle said to herself, 'it was a little that
the mock turtle said to see it said to sea it said to sea it say it
the marge hard sat hn a little that she was so sereated to herself, and
she sabbit said to herself, 'it was a little little shated of the sooe
of the coomouse it was a little lad good to the little gooder head. and
said to herself, 'it was a little little shated of the mouse of the
good of the courte, and it was a little little shated in a little that
the was a little little shated of the thmee said to see it was a little
book of the was a little that she was so sereated to hare a little the
began sitee of the was of the was a little that she was so seally and
the sabbit was a little lad good to the little gooder head of the gad
seared to see it was a little lad good to the little good
```
我们可以看到,通常拼写错误较少,文本看起来更逼真,但仍然是非常荒谬的。
例如,相同的短语一次又一次地重复,例如“_ 对自己说 _”和“_ 少 _”。行情已经开启但尚未平仓。
这些都是更好的结果,但仍有很大的改进空间。
## 改进模型的 10 个扩展思路
以下是可以进一步改进您可以尝试的模型的 10 个想法:
* 预测少于 1,000 个字符作为给定种子的输出。
* 从源文本中删除所有标点符号,从而从模型的词汇表中删除。
* 尝试对输入序列进行热编码。
* 在填充句子而不是随机字符序列上训练模型。
* 将训练时期的数量增加到 100 或数百。
* 将 dropout 添加到可见输入层并考虑调整丢失百分比。
* 调整批量大小,尝试批量大小为 1 作为(非常慢)基线,并从那里开始更大的尺寸。
* 向层和/或更多层添加更多内存单元。
* 在解释预测概率时,对比例因子([温度](https://en.wikipedia.org/wiki/Softmax_function#Reinforcement_learning))进行实验。
* 将 LSTM 层更改为“有状态”以维护批次之间的状态。
你尝试过这些扩展吗?在评论中分享您的结果。
## 资源
该字符文本模型是使用循环神经网络生成文本的流行方式。
如果您有兴趣深入了解,下面是一些关于该主题的更多资源和教程。也许最受欢迎的是 Andrej Karpathy 的教程,题为“[循环神经网络的不合理效力](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)”。
* [使用循环神经网络生成文本](http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf) [pdf],2011
* [用于文本生成的 LSTM 的 Keras 代码示例](https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py)。
* [用于文本生成的 LSTM 的烤宽面条代码示例](https://github.com/Lasagne/Recipes/blob/master/examples/lstm_text_generation.py)。
* [MXNet 教程,用于使用 LSTM 进行文本生成](http://mxnetjl.readthedocs.io/en/latest/tutorial/char-lstm.html)。
* [使用循环神经网络](https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)自动生成 Clickbait。
## 摘要
在这篇文章中,您了解了如何使用 Keras 深度学习库开发用于 Python 文本生成的 LSTM 循环神经网络。
阅读这篇文章后你知道:
* 在哪里可以免费下载经典书籍的 ASCII 文本,以便进行训练。
* 如何在文本序列上训练 LSTM 网络以及如何使用训练有素的网络生成新序列。
* 如何开发堆叠 LSTM 网络并提升模型的表现。
您对 LSTM 网络或此帖子的文本生成有任何疑问吗?在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程