# 如何用 Python 清理机器学习的文本
> 原文: [https://machinelearningmastery.com/clean-text-machine-learning-python/](https://machinelearningmastery.com/clean-text-machine-learning-python/)
你不能直接从原始文本到适合机器学习或深度学习模型。
您必须首先清理文本,这意味着将其拆分为单词并处理标点符号和大小写。
实际上,您可能需要使用一整套文本准备方法,方法的选择实际上取决于您的自然语言处理任务。
在本教程中,您将了解如何清理和准备文本,以便通过机器学习进行建模。
完成本教程后,您将了解:
* 如何开始开发自己非常简单的文本清理工具。
* 如何采取措施并使用 NLTK 库中更复杂的方法。
* 如何在使用像文字嵌入这样的现代文本表示方法时准备文本。
让我们开始吧。
* **2017 年 11 月更新**:修正了“分裂为单词”部分中的代码拼写错误,感谢 David Comfort。
![How to Develop Multilayer Perceptron Models for Time Series Forecasting](img/3845e70194ea7d465b653bbb0d8b993a.jpg)
如何开发用于时间序列预测的多层感知器模型
照片由土地管理局提供,保留一些权利。
## 教程概述
本教程分为 6 个部分;他们是:
1. 弗兰兹卡夫卡的变态
2. 文本清理是特定于任务的
3. 手动标记
4. 使用 NLTK 进行标记和清理
5. 其他文字清理注意事项
6. 清除词嵌入文本的提示
## 弗兰兹卡夫卡的变态
让我们从选择数据集开始。
在本教程中,我们将使用 [Franz Kafka](https://en.wikipedia.org/wiki/Franz_Kafka) 的书 [Metamorphosis](https://en.wikipedia.org/wiki/The_Metamorphosis) 中的文本。没有具体的原因,除了它的简短,我喜欢它,你也可能喜欢它。我希望这是大多数学生在学校必读的经典之作。
Metamorphosis 的全文可从 Project Gutenberg 免费获得。
* [Franz Kafka 对 Project Gutenberg 的变形](http://www.gutenberg.org/ebooks/5200)
您可以在此处下载文本的 ASCII 文本版本:
* [变形由 Franz Kafka 纯文本 UTF-8](http://www.gutenberg.org/cache/epub/5200/pg5200.txt) (可能需要加载页面两次)。
下载文件并将其放在当前工作目录中,文件名为“ _metamorphosis.txt_ ”。
该文件包含我们不感兴趣的页眉和页脚信息,特别是版权和许可证信息。打开文件并删除页眉和页脚信息,并将文件另存为“ _metamorphosis_clean.txt_ ”。
clean 文件的开头应如下所示:
> 一天早上,当 Gregor Samsa 从困扰的梦中醒来时,他发现自己在床上变成了一个可怕的害虫。
该文件应以:
> 并且,好像在确认他们的新梦想和善意时,一旦他们到达目的地,Grete 就是第一个站起来伸展她年轻的身体的人。
穷格雷戈尔......
## 文本清理是特定于任务的
在实际掌握了您的文本数据之后,清理文本数据的第一步是对您要实现的目标有一个强烈的了解,并在该上下文中查看您的文本,看看究竟可能有什么帮助。
花点时间看看文字。你注意到什么?
这是我看到的:
* 它是纯文本,所以没有解析标记(耶!)。
* 原始德语的翻译使用英国英语(例如“_ 旅行 _”)。
* 这些线条是用约 70 个字符(meh)的新线条人工包裹的。
* 没有明显的拼写错误或拼写错误。
* 有标点符号,如逗号,撇号,引号,问号等。
* 有像盔甲一样的连字符描述。
* 有很多使用 em 破折号(“ - ”)继续句子(可能用逗号替换?)。
* 有名字(例如“ _Samsa 先生 _”)
* 似乎没有需要处理的数字(例如 1999)
* 有节标记(例如“II”和“III”),我们删除了第一个“I”。
我确信还有很多人会接受训练有素的眼睛。
我们将在本教程中查看一般文本清理步骤。
尽管如此,请考虑我们在处理此文本文档时可能遇到的一些目标。
例如:
* 如果我们有兴趣开发 [Kafkaesque](http://www.thefreedictionary.com/Kafkaesk) 语言模型,我们可能希望保留所有案例,引号和其他标点符号。
* 如果我们有兴趣将文件分类为“ _Kafka_ ”和“ _Not Kafka_ ”,那么我们可能会想要删除案例,标点符号,甚至修剪单词。
使用您的任务作为镜头,通过它选择如何准备文本数据。
## 手动标记
文本清理很难,但我们选择使用的文本已经非常干净了。
我们可以编写一些 Python 代码来手动清理它,这对于遇到的那些简单问题来说是一个很好的练习。像正则表达式和拆分字符串这样的工具可以帮到你很长的路。
### 1.加载数据
让我们加载文本数据,以便我们可以使用它。
文本很小,可以快速加载并轻松融入内存。情况并非总是如此,您可能需要将代码写入内存映射文件。像 NLTK 这样的工具(将在下一节中介绍)将使得处理大文件变得更加容易。
我们可以将整个“_ 变态 clean.text_ ”加载到内存中,如下所示:
```py
# load text
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
```
运行该示例将整个文件加载到可以使用的内存中。
### 2.按空白分割
清晰文本通常表示我们可以在机器学习模型中使用的单词或标记列表。
这意味着将原始文本转换为单词列表并再次保存。
一种非常简单的方法是使用空格分割文档,包括“”,新行,制表符等。我们可以在 Python 中使用 split()函数在加载的字符串上执行此操作。
```py
# load text
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words by white space
words = text.split()
print(words[:100])
```
运行该示例将文档拆分为一长串单词并打印前 100 个供我们查看。
我们可以看到标点符号被保留(例如“_ 不是 _”和“_ 盔甲式 _”),这很好。我们还可以看到句子标点符号的结尾与最后一个单词保持一致(例如“_ 认为 _。”),这不是很好。
```py
['One', 'morning,', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams,', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin.', 'He', 'lay', 'on', 'his', 'armour-like', 'back,', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly,', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections.', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment.', 'His', 'many', 'legs,', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him,', 'waved', 'about', 'helplessly', 'as', 'he', 'looked.', '"What\'s', 'happened', 'to', 'me?"', 'he', 'thought.', 'It', "wasn't", 'a', 'dream.', 'His', 'room,', 'a', 'proper', 'human']
```
### 3.选择单词
另一种方法可能是使用正则表达式模型(重新)并通过选择字母数字字符串(a-z,A-Z,0-9 和'_')将文档拆分为单词。
例如:
```py
# load text
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split based on words only
import re
words = re.split(r'\W+', text)
print(words[:100])
```
再次,运行示例我们可以看到我们得到了单词列表。这一次,我们可以看到“_ 盔甲式 _”现在是两个词“_ 装甲 _”和“_ 喜欢 _”(精)但是收缩像“ _]什么是 _“也是两个词”_ 什么 _“和” _s_ “(不是很好)。
```py
['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin', 'He', 'lay', 'on', 'his', 'armour', 'like', 'back', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment', 'His', 'many', 'legs', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', 'waved', 'about', 'helplessly', 'as', 'he', 'looked', 'What', 's', 'happened', 'to', 'me', 'he', 'thought', 'It', 'wasn', 't', 'a', 'dream', 'His', 'room']
```
### 3.按空格分割并删除标点符号
注意:此示例是为 Python 3 编写的。
我们可能想要这些单词,但没有像逗号和引号那样的标点符号。我们也希望将宫缩保持在一起。
一种方法是通过空格将文档拆分为单词(如“ _2.按空白划分 _”),然后使用字符串翻译将所有标点符号替换为空(例如删除它)。
Python 提供了一个名为 _string.punctuation_ 的常量,它提供了一个很好的标点字符列表。例如:
```py
print(string.punctuation)
```
结果是:
```py
!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
```
Python 提供了一个名为 [translate()](https://docs.python.org/3/library/stdtypes.html#str.translate)的函数,它将一组字符映射到另一组。
我们可以使用函数 [maketrans()](https://docs.python.org/3/library/stdtypes.html#str.maketrans)来创建映射表。我们可以创建一个空的映射表,但是这个函数的第三个参数允许我们列出在翻译过程中要删除的所有字符。例如:
```py
table = str.maketrans('', '', string.punctuation)
```
我们可以将所有这些放在一起,加载文本文件,通过空格将其拆分为单词,然后翻译每个单词以删除标点符号。
```py
# load text
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words by white space
words = text.split()
# remove punctuation from each word
import string
table = str.maketrans('', '', string.punctuation)
stripped = [w.translate(table) for w in words]
print(stripped[:100])
```
我们可以看到,这主要是产生了预期的效果。
像“_ 什么 _”这样的收缩已成为“_ 什么 _”,但“_ 盔甲式 _”已成为“ _armourlike_ ”。
```py
['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin', 'He', 'lay', 'on', 'his', 'armourlike', 'back', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment', 'His', 'many', 'legs', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', 'waved', 'about', 'helplessly', 'as', 'he', 'looked', 'Whats', 'happened', 'to', 'me', 'he', 'thought', 'It', 'wasnt', 'a', 'dream', 'His', 'room', 'a', 'proper', 'human']
```
如果您对正则表达式有所了解,那么您就知道事情可能会变得复杂。
### 4.规范化案例
将所有单词转换为一个案例是很常见的。
这意味着词汇量会缩小,但会丢失一些区别(例如“ _Apple_ ”公司与“ _apple_ ”水果是一个常用的例子)。
我们可以通过调用每个单词的 lower()函数将所有单词转换为小写。
例如:
```py
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words by white space
words = text.split()
# convert to lower case
words = [word.lower() for word in words]
print(words[:100])
```
运行该示例,我们可以看到所有单词现在都是小写的。
```py
['one', 'morning,', 'when', 'gregor', 'samsa', 'woke', 'from', 'troubled', 'dreams,', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin.', 'he', 'lay', 'on', 'his', 'armour-like', 'back,', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly,', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections.', 'the', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment.', 'his', 'many', 'legs,', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him,', 'waved', 'about', 'helplessly', 'as', 'he', 'looked.', '"what\'s', 'happened', 'to', 'me?"', 'he', 'thought.', 'it', "wasn't", 'a', 'dream.', 'his', 'room,', 'a', 'proper', 'human']
```
### 注意
清理文本非常困难,特定于问题,并且充满了权衡。
记住,简单就是更好。
更简单的文本数据,更简单的模型,更小的词汇表。您可以随时将事情变得更复杂,看看它是否会带来更好的模型技能。
接下来,我们将介绍 NLTK 库中的一些工具,它们提供的不仅仅是简单的字符串拆分。
## 使用 NLTK 进行标记和清理
[自然语言工具包](http://www.nltk.org/),简称 NLTK,是为工作和建模文本而编写的 Python 库。
它提供了用于加载和清理文本的良好工具,我们可以使用这些工具来准备我们的数据,以便使用机器学习和深度学习算法。
### 1.安装 NLTK
您可以使用自己喜欢的包管理器安装 NLTK,例如 pip:
```py
sudo pip install -U nltk
```
安装之后,您将需要安装库使用的数据,包括一组很好的文档,您可以在以后用它们来测试 NLTK 中的其他工具。
有几种方法可以做到这一点,例如在脚本中:
```py
import nltk
nltk.download()
```
或者从命令行:
```py
python -m nltk.downloader all
```
有关安装和设置 NLTK 的更多帮助,请参阅:
* [安装 NLTK](http://www.nltk.org/install.html)
* [安装 NLTK 数据](http://www.nltk.org/data.html)
### 2.分成句子
一个很好的有用的第一步是将文本分成句子。
一些建模任务更喜欢以段落或句子的形式输入,例如 word2vec。您可以先将文本拆分为句子,将每个句子分成单词,然后将每个句子保存到文件中,每行一个。
NLTK 提供 _sent_tokenize()_ 函数将文本拆分成句子。
下面的示例将“ _metamorphosis_clean.txt_ ”文件加载到内存中,将其拆分为句子,然后打印第一个句子。
```py
# load data
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into sentences
from nltk import sent_tokenize
sentences = sent_tokenize(text)
print(sentences[0])
```
运行这个例子,我们可以看到虽然文档被分成了句子,但每个句子仍然保留了原始文档中行的人工包装的新行。
> 一天早上,当格里高尔萨姆莎从困扰的梦中醒来时,他发现
> 自己在床上变成了一个可怕的害虫。
### 3.分成单词
NLTK 提供了一个名为 _word_tokenize()_ 的函数,用于将字符串拆分为标记(名义上为单词)。
它根据空格和标点符号分割标记。例如,逗号和句点被视为单独的标记。收缩被分开(例如“_ 什么 _”变成“_ 什么 _”“' _s_ ”)。行情保留,等等。
例如:
```py
# load data
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words
from nltk.tokenize import word_tokenize
tokens = word_tokenize(text)
print(tokens[:100])
```
运行代码,我们可以看到标点符号现在是我们可以决定专门过滤掉的标记。
```py
['One', 'morning', ',', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', ',', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin', '.', 'He', 'lay', 'on', 'his', 'armour-like', 'back', ',', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly', ',', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections', '.', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment', '.', 'His', 'many', 'legs', ',', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', ',', 'waved', 'about', 'helplessly', 'as', 'he', 'looked', '.', '``', 'What', "'s", 'happened', 'to']
```
### 4.过滤掉标点符号
我们可以过滤掉我们不感兴趣的所有令牌,例如所有独立标点符号。
这可以通过遍历所有令牌并且仅保留那些全部是字母的令牌来完成。 Python 具有可以使用的函数 [isalpha()](https://docs.python.org/3/library/stdtypes.html#str.isalpha)。例如:
```py
# load data
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words
from nltk.tokenize import word_tokenize
tokens = word_tokenize(text)
# remove all tokens that are not alphabetic
words = [word for word in tokens if word.isalpha()]
print(words[:100])
```
运行这个例子,你不仅可以看到标点符号,而且“_ 盔甲式 _”和“_ 的 _”等例子也被过滤掉了。
```py
['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible', 'vermin', 'He', 'lay', 'on', 'his', 'back', 'and', 'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment', 'His', 'many', 'legs', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', 'waved', 'about', 'helplessly', 'as', 'he', 'looked', 'What', 'happened', 'to', 'me', 'he', 'thought', 'It', 'was', 'a', 'dream', 'His', 'room', 'a', 'proper', 'human', 'room']
```
### 5.过滤掉停用词(和管道)
[停用词](https://en.wikipedia.org/wiki/Stop_words)是那些对词组的深层含义没有贡献的词。
它们是最常见的词,例如:“”,“ _a_ ”和“_ 是 _”。
对于某些应用程序(如文档分类),删除停用词可能有意义。
NLTK 提供了各种语言(例如英语)共同商定的停用词列表。它们可以按如下方式加载:
```py
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
print(stop_words)
```
您可以看到完整列表,如下所示:
```py
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn', 'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn', 'weren', 'won', 'wouldn']
```
您可以看到它们都是小写并删除了标点符号。
您可以将您的令牌与停用词进行比较并过滤掉它们,但您必须确保以相同的方式准备文本。
让我们通过一小段文本准备来演示这一点,包括:
1. 加载原始文本。
2. 分成代币。
3. 转换为小写。
4. 从每个令牌中删除标点符号。
5. 过滤掉非字母的剩余令牌。
6. 过滤掉停用词的令牌。
```py
# load data
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words
from nltk.tokenize import word_tokenize
tokens = word_tokenize(text)
# convert to lower case
tokens = [w.lower() for w in tokens]
# remove punctuation from each word
import string
table = str.maketrans('', '', string.punctuation)
stripped = [w.translate(table) for w in tokens]
# remove remaining tokens that are not alphabetic
words = [word for word in stripped if word.isalpha()]
# filter out stop words
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
words = [w for w in words if not w in stop_words]
print(words[:100])
```
运行这个例子,我们可以看到除了所有其他变换之外,还删除了诸如“ _a_ ”和“_ 到 _”之类的停用词。
我注意到我们仍然留下像“ _nt_ ”这样的令牌。兔子洞很深;我们总能做得更多。
```py
['one', 'morning', 'gregor', 'samsa', 'woke', 'troubled', 'dreams', 'found', 'transformed', 'bed', 'horrible', 'vermin', 'lay', 'armourlike', 'back', 'lifted', 'head', 'little', 'could', 'see', 'brown', 'belly', 'slightly', 'domed', 'divided', 'arches', 'stiff', 'sections', 'bedding', 'hardly', 'able', 'cover', 'seemed', 'ready', 'slide', 'moment', 'many', 'legs', 'pitifully', 'thin', 'compared', 'size', 'rest', 'waved', 'helplessly', 'looked', 'happened', 'thought', 'nt', 'dream', 'room', 'proper', 'human', 'room', 'although', 'little', 'small', 'lay', 'peacefully', 'four', 'familiar', 'walls', 'collection', 'textile', 'samples', 'lay', 'spread', 'table', 'samsa', 'travelling', 'salesman', 'hung', 'picture', 'recently', 'cut', 'illustrated', 'magazine', 'housed', 'nice', 'gilded', 'frame', 'showed', 'lady', 'fitted', 'fur', 'hat', 'fur', 'boa', 'sat', 'upright', 'raising', 'heavy', 'fur', 'muff', 'covered', 'whole', 'lower', 'arm', 'towards', 'viewer']
```
### 6.词干
[词干](https://en.wikipedia.org/wiki/Stemming)指的是将每个单词缩减为其根或基数的过程。
例如“_ 钓鱼 _”,“_ 捕捞 _”,“ _fisher_ ”全部减少到茎“_ 鱼 _”。
一些应用程序,如文档分类,可以从词干分析中受益,以便既减少词汇量又专注于文档的感觉或情感,而不是更深层的含义。
有许多词干算法,尽管流行的和长期存在的方法是 Porter Stemming 算法。这种方法可以通过 [PorterStemmer](https://tartarus.org/martin/PorterStemmer/) 类在 NLTK 中使用。
例如:
```py
# load data
filename = 'metamorphosis_clean.txt'
file = open(filename, 'rt')
text = file.read()
file.close()
# split into words
from nltk.tokenize import word_tokenize
tokens = word_tokenize(text)
# stemming of words
from nltk.stem.porter import PorterStemmer
porter = PorterStemmer()
stemmed = [porter.stem(word) for word in tokens]
print(stemmed[:100])
```
运行这个例子,你可以看到单词已经减少到它们的词干,例如“ _trouble_ ”变成了“ _troubl_ ”。您还可以看到,词干实现还将令牌减少为小写,可能是字表中的内部查找。
您还可以看到,词干实现还将令牌减少为小写,可能是字表中的内部查找。
```py
['one', 'morn', ',', 'when', 'gregor', 'samsa', 'woke', 'from', 'troubl', 'dream', ',', 'he', 'found', 'himself', 'transform', 'in', 'hi', 'bed', 'into', 'a', 'horribl', 'vermin', '.', 'He', 'lay', 'on', 'hi', 'armour-lik', 'back', ',', 'and', 'if', 'he', 'lift', 'hi', 'head', 'a', 'littl', 'he', 'could', 'see', 'hi', 'brown', 'belli', ',', 'slightli', 'dome', 'and', 'divid', 'by', 'arch', 'into', 'stiff', 'section', '.', 'the', 'bed', 'wa', 'hardli', 'abl', 'to', 'cover', 'it', 'and', 'seem', 'readi', 'to', 'slide', 'off', 'ani', 'moment', '.', 'hi', 'mani', 'leg', ',', 'piti', 'thin', 'compar', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', ',', 'wave', 'about', 'helplessli', 'as', 'he', 'look', '.', '``', 'what', "'s", 'happen', 'to'
```
在 NLTK 中有一套很好的词干和词形还原算法可供选择,如果将词语缩减到它们的根目录就是你的项目需要的东西。
## 其他文字清理注意事项
我们才刚开始。
因为本教程的源文本开头是相当干净的,所以我们跳过了许多您可能需要在自己的项目中处理的文本清理问题。
以下是清理文本时的其他注意事项的简短列表:
* 处理不适合内存的大型文档和大量文本文档。
* 从标记中提取文本,如 HTML,PDF 或其他结构化文档格式。
* 从其他语言到英语的音译。
* 将 Unicode 字符解码为规范化形式,例如 UTF8。
* 处理特定领域的单词,短语和首字母缩略词。
* 处理或删除数字,例如日期和金额。
* 找出并纠正常见的拼写错误和拼写错误。
* ...
这份名单可以继续使用。
希望您能够看到获得真正干净的文本是不可能的,我们真的可以根据我们拥有的时间,资源和知识做到最好。
“清洁”的概念实际上是由项目的特定任务或关注点定义的。
专家提示是在每次转换后不断检查您的令牌。我试图在本教程中表明,我希望你能理解这一点。
理想情况下,您可以在每次转换后保存新文件,以便花时间处理新表单中的所有数据。在花时间审查您的数据时,事情总是会突然发生。
你以前做过一些文字清理吗?您最喜欢的变换管道是什么?
请在下面的评论中告诉我。
## 清除词嵌入文本的提示
最近,自然语言处理领域已逐渐从单词模型和单词编码转向单词嵌入。
单词嵌入的好处在于,它们将每个单词编码为一个密集的向量,捕获有关其在训练文本中的相对含义的内容。
这意味着在嵌入空间中将自动学习诸如大小写,拼写,标点符号等单词的变体。反过来,这可能意味着您的文本所需的清洁量可能更少,也许与传统的文本清理完全不同。
例如,干缩词语或删除标点符号可能不再有意义。
Tomas Mikolov 是 word2vec 的开发者之一,word2vec 是一种流行的嵌入式方法。他建议在学习单词嵌入模型时只需要非常小的文本清理。
下面是他在回答有关如何最好地为 word2vec 准备文本数据的问题时的回答。
> 没有普遍的答案。这一切都取决于你打算使用的向量。根据我的经验,通常可以从单词中断开(或删除)标点符号,有时还会将所有字符转换为小写。人们也可以用一些单一的标记替换所有数字(可能大于某些常数),例如。
>
> 所有这些预处理步骤都旨在减少词汇量,而不删除任何重要内容(在某些情况下,当你小写某些单词时可能不是这样,即'Bush'与'bush'不同,而'Another'通常有与“另一个”的意义相同。词汇量越小,内存复杂度越低,估计的词的参数越稳健。您还必须以相同的方式预处理测试数据。
>
> ...
>
> 简而言之,如果你要进行实验,你会更好地理解这一切。
[阅读 Google 网上论坛](https://groups.google.com/d/msg/word2vec-toolkit/jPfyP6FoB94/tGzZxScO0GsJ)的完整帖子。
## 进一步阅读
如果您要深入了解,本节将提供有关该主题的更多资源。
* [Franz Kafka 对 Project Gutenberg 的变形](http://www.gutenberg.org/ebooks/5200)
* [nltk.tokenize 包 API](http://www.nltk.org/api/nltk.tokenize.html)
* [nltk.stem 包 API](http://www.nltk.org/api/nltk.stem.html)
* [第 3 章:使用 Python 处理原始文本,自然语言处理](http://www.nltk.org/book/ch03.html)
## 摘要
在本教程中,您了解了如何在 Python 中清理文本或机器学习。
具体来说,你学到了:
* 如何开始开发自己非常简单的文本清理工具。
* 如何采取措施并使用 NLTK 库中更复杂的方法。
* 如何在使用像文字嵌入这样的现代文本表示方法时准备文本。
你有任何问题吗?
在下面的评论中提出您的问题,我会尽力回答。
你有清洁文字的经验吗?
请在下面的评论中分享您的经验。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q&amp; A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程