# 时间序列预测的多层感知器网络探索性配置
> 原文: [https://machinelearningmastery.com/exploratory-configuration-multilayer-perceptron-network-time-series-forecasting/](https://machinelearningmastery.com/exploratory-configuration-multilayer-perceptron-network-time-series-forecasting/)
当开始使用神经网络的新预测建模项目时,可能会很困难。
有很多配置,并没有明确的想法从哪里开始。
系统化很重要。您可以打破糟糕的假设并快速磨练有效的配置和可能需要进一步调查的区域。
在本教程中,您将了解如何使用多层感知器(MLP)神经网络的探索性配置来为时间序列预测找到良好的首先模型。
完成本教程后,您将了解:
* 如何设计一个强大的实验测试工具来评估 MLP 模型的时间序列预测。
* 针对不同时期,神经元和滞后配置的系统实验设计。
* 如何解释结果并使用诊断来了解有关良好表现模型的更多信息。
让我们开始吧。
* **2017 年 7 月更新**:更改了创建模型的功能,使其更具描述性。
![Exploratory Configuration of a Multilayer Perceptron Network for Time Series Forecasting](https://img.kancloud.cn/c0/65/c06565ecb23ba04ecb9f25a7c2e29d2e_640x427.jpg)
用于时间序列预测的多层感知器网络的探索性配置
照片由 [Lachlan Donald](https://www.flickr.com/photos/lox/33885582/) 拍摄,保留一些权利。
## 教程概述
本教程分为 6 个部分。他们是:
1. 洗发水销售数据集
2. 实验测试线束
3. 不同的训练时代
4. 改变隐藏层神经元
5. 具有滞后的变隐藏层神经元
6. 审查结果
### 环境
本教程假定您已安装 Python SciPy 环境。您可以在此示例中使用 Python 2 或 3。
本教程假设您安装了 TensorFlow 或 Theano 后端的 Keras v2.0 或更高版本。
本教程还假设您安装了 scikit-learn,Pandas,NumPy 和 Matplotlib。
接下来,让我们看看标准时间序列预测问题,我们可以将其用作此实验的上下文。
如果您在设置 Python 环境时需要帮助,请参阅以下帖子:
* [如何使用 Anaconda 设置用于机器学习和深度学习的 Python 环境](http://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 洗发水销售数据集
该数据集描述了 3 年期间每月洗发水的销售数量。
单位是销售计数,有 36 个观察。原始数据集归功于 Makridakis,Wheelwright 和 Hyndman(1998)。
[您可以在此处下载并了解有关数据集的更多信息](https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period)。
下面的示例加载并创建已加载数据集的图。
```py
# load and plot dataset
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
# load dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# summarize first few rows
print(series.head())
# line plot
series.plot()
pyplot.show()
```
运行该示例将数据集作为 Pandas Series 加载并打印前 5 行。
```py
Month
1901-01-01 266.0
1901-02-01 145.9
1901-03-01 183.1
1901-04-01 119.3
1901-05-01 180.3
Name: Sales, dtype: float64
```
然后创建该系列的线图,显示明显的增加趋势。
![Line Plot of Shampoo Sales Dataset](https://img.kancloud.cn/11/f1/11f11d2a2ec40c7c0724e4e09f11a4ca_640x480.jpg)
洗发水销售数据集的线图
接下来,我们将看一下实验中使用的模型配置和测试工具。
## 实验测试线束
本节介绍本教程中使用的测试工具。
### 数据拆分
我们将 Shampoo Sales 数据集分为两部分:训练和测试集。
前两年的数据将用于训练数据集,剩余的一年数据将用于测试集。
将使用训练数据集开发模型,并对测试数据集进行预测。
测试数据集的持久性预测(朴素预测)实现了每月洗发水销售 136.761 的错误。这在测试集上提供了较低的可接受表现限制。
### 模型评估
将使用滚动预测场景,也称为前进模型验证。
测试数据集的每个时间步骤将一次一个地走。将使用模型对时间步长进行预测,然后将获取测试集的实际预期值,并使其可用于下一时间步的预测模型。
这模仿了一个真实世界的场景,每个月都会有新的洗发水销售观察结果,并用于下个月的预测。
这将通过训练和测试数据集的结构进行模拟。
将收集关于测试数据集的所有预测,并计算错误分数以总结模型的技能。将使用均方根误差(RMSE),因为它会对大错误进行处罚,并产生与预测数据相同的分数,即每月洗发水销售额。
### 数据准备
在我们将 MLP 模型拟合到数据集之前,我们必须转换数据。
在拟合模型和进行预测之前,对数据集执行以下三个数据变换。
1. **转换时间序列数据,使其静止**。具体而言,滞后= 1 差分以消除数据中的增加趋势。
2. **将时间序列转换为监督学习问题**。具体而言,将数据组织成输入和输出模式,其中前一时间步的观察被用作预测当前时间步的观察的输入
3. **将观察结果转换为具有特定比例**。具体而言,将数据重新调整为-1 到 1 之间的值。
这些变换在预测时反转,在计算和误差分数之前将它们恢复到原始比例。
### MLP 模型
我们将使用具有 1 个神经元隐藏层的基础 MLP 模型,对隐藏神经元的整流线性激活函数,以及输出神经元上的线性激活函数。
在可能的情况下使用批量大小为 4,并且截断训练数据以确保模式的数量可被 4 整除。在某些情况下,使用批量大小为 2。
通常,训练数据集在每个批次或每个时期之后进行混洗,这有助于将训练数据集拟合到分类和回归问题上。所有实验都关闭了改组,因为它似乎可以带来更好的表现。需要更多的研究来确认时间序列预测的结果。
使用有效的 ADAM 优化算法和均方误差损失函数来拟合模型。
### 实验运行
每个实验场景将运行 30 次,并且测试集上的 RMSE 得分将从每次运行结束时记录。
让我们深入研究实验。
## 不同的训练时代
在第一个实验中,我们将研究改变隐藏层中具有一个隐藏层和一个神经元的简单 MLP 的训练时期的数量。
我们将使用批量大小为 4 并评估训练时期 50,100,500,1000 和 2000。
完整的代码清单如下。
此代码清单将用作所有后续实验的基础,后续部分中仅提供对此代码的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# fit an MLP network to training data
def fit_model(train, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
model = Sequential()
model.add(Dense(neurons, activation='relu', input_dim=X.shape[1]))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X, y, epochs=nb_epoch, batch_size=batch_size, verbose=0, shuffle=False)
return model
# run a repeated experiment
def experiment(repeats, series, epochs, lag, neurons):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, lag)
supervised_values = supervised.values[lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(repeats):
# fit the model
batch_size = 4
train_trimmed = train_scaled[2:, :]
model = fit_model(train_trimmed, batch_size, epochs, neurons)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
output = model.predict(test_reshaped, batch_size=batch_size)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# experiment
repeats = 30
results = DataFrame()
lag = 1
neurons = 1
# vary training epochs
epochs = [50, 100, 500, 1000, 2000]
for e in epochs:
results[str(e)] = experiment(repeats, series, e, lag, neurons)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('boxplot_epochs.png')
```
运行实验在每次实验运行结束时打印测试集 RMSE。
在所有运行结束时,提供了一个摘要统计表,每个统计信息对应一行,每列有一个配置。
总结统计表明,平均 1000 个训练时期导致更好的表现,随着训练时期的增加,误差总体下降趋势。
```py
50 100 500 1000 2000
count 30.000000 30.000000 30.000000 30.000000 30.000000
mean 129.660167 129.388944 111.444027 103.821703 107.500301
std 30.926344 28.499592 23.181317 22.138705 24.780781
min 94.598957 94.184903 89.506815 86.511801 86.452041
25% 105.198414 105.722736 90.679930 90.058655 86.457260
50% 129.705407 127.449491 93.508245 90.118331 90.074494
75% 141.420145 149.625816 136.157299 135.510850 135.741340
max 198.716220 198.704352 141.226816 139.994388 142.097747
```
还创建了每个配置的测试 RMSE 分数分布的盒子和须状图,并保存到文件中。
该图强调了每个配置在测试 RMSE 分数(框)中显示相同的一般分布,中位数(绿线)随着训练时期的增加而向下趋势。
结果证实,配置的 MLP 训练 1000 是这个问题的一个很好的起点。
![Box and Whisker Plot of Vary Training Epochs for Time Series Forecasting on the Shampoo Sales Dataset](https://img.kancloud.cn/e9/73/e9730e8b61a11e192781f4e535259fb1_640x480.jpg)
用于洗发水销售数据集的时间序列预测的变化训练时期的盒子和晶须图
网络配置需要考虑的另一个角度是模型适应时的行为方式。
我们可以在每个训练时期之后评估训练和测试数据集上的模型,以了解配置是否过度拟合或不适合问题。
我们将在每组实验的最佳结果上使用此诊断方法。将运行总共 10 次重复的配置,并且在线图上绘制每个训练迭代之后的训练和测试 RMSE 得分。
在这种情况下,我们将在 MLP 适合 1000 个时期使用此诊断。
完整的诊断代码清单如下。
与前面的代码清单一样,下面的代码清单将用作本教程中所有诊断的基础,并且后续部分中仅提供对此清单的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
df = df.drop(0)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# evaluate the model on a dataset, returns RMSE in transformed units
def evaluate(model, raw_data, scaled_dataset, scaler, offset, batch_size):
# separate
X, y = scaled_dataset[:,0:-1], scaled_dataset[:,-1]
# forecast dataset
output = model.predict(X, batch_size=batch_size)
# invert data transforms on forecast
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
# invert scaling
yhat = invert_scale(scaler, X[i], yhat)
# invert differencing
yhat = yhat + raw_data[i]
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_data[1:], predictions))
return rmse
# fit an MLP network to training data
def fit(train, test, raw, scaler, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
# prepare model
model = Sequential()
model.add(Dense(neurons, activation='relu', input_dim=X.shape[1]))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
repeats = 10
n_batch = 4
n_epochs = 1000
n_neurons = 1
n_lag = 1
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(repeats):
history = fit(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_epochs.png')
# entry point
run()
```
运行诊断程序打印最终训练并测试每次运行的 RMSE。更有趣的是创建的最终线图。
线图显示了每个训练时期之后的训练 RMSE(蓝色)和测试 RMSE(橙色)。
在这种情况下,诊断图显示在大约 400 个训练时期之后训练和测试 RMSE 几乎没有差异。训练和测试表现均接近平坦线。
这种快速平衡表明模型正在达到容量,并且可以从滞后观察或额外神经元方面的更多信息中受益。
![Diagnostic Line Plot of Train and Test Performance of 400 Epochs on the Shampoo Sales Dataset](https://img.kancloud.cn/ab/dc/abdc9331f0c33047ec1b6c3fbce92749_640x480.jpg)
训练诊断线图和洗发水销售数据集 1000 个时期的测试表现
## 改变隐藏层神经元
在本节中,我们将研究改变单个隐藏层中神经元的数量。
增加神经元的数量会增加网络的学习能力,从而存在过度拟合训练数据的风险。
我们将探索将神经元的数量从 1 增加到 5 并使网络适合 1000 个时期。
下面列出了实验脚本的不同之处。
```py
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# experiment
repeats = 30
results = DataFrame()
lag = 1
epochs = 1000
# vary neurons
neurons = [1, 2, 3, 4, 5]
for n in neurons:
results[str(n)] = experiment(repeats, series, epochs, lag, n)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('boxplot_neurons.png')
```
运行实验将打印每个配置的摘要统计信息。
从平均表现来看,它表明测试 RMSE 随着单个隐藏层中神经元数量的增加而减少。
最好的结果似乎是 3 个神经元。
```py
1 2 3 4 5
count 30.000000 30.000000 30.000000 30.000000 30.000000
mean 105.107026 102.836520 92.675912 94.889952 96.577617
std 23.130824 20.102353 10.266732 9.751318 6.421356
min 86.565630 84.199871 83.388967 84.385293 87.208454
25% 88.035396 89.386670 87.643954 89.154866 89.961809
50% 90.084895 91.488484 90.670565 91.204303 96.717739
75% 136.145248 104.416518 93.117926 100.228730 101.969331
max 143.428154 140.923087 136.883946 135.891663 106.797563
```
还创建了一个盒子和须状图,以总结和比较结果的分布。
该图证实了 3 个神经元与其他配置相比表现良好的建议,并且还表明结果的扩散也较小。这可能表明配置更稳定。
![Box and Whisker Plot of Varying Hidden Neurons for Time Series Forecasting on the Shampoo Sales Dataset](https://img.kancloud.cn/99/26/9926f4ee5c3e8947a9c11e182c47f761_640x480.jpg)
用于洗发水销售数据集的时间序列预测的变异隐藏神经元的盒子和晶须图
同样,我们可以通过回顾适用于 1000 个时期的 3 个神经元的所选配置的诊断来更深入地潜水。
诊断脚本的更改仅限于 _run()_ 功能,如下所示。
```py
# run diagnostic experiments
def run():
# config
repeats = 10
n_batch = 4
n_epochs = 1000
n_neurons = 3
n_lag = 1
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(repeats):
history = fit(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_neurons.png')
```
运行诊断脚本为每个训练时期提供了训练和测试 RMSE 的线图。
这种诊断方法表明模型技能可能已经过时,可能大约有 400 个时代。该图还提出了过度拟合的可能情况,其中测试 RMSE 在过去 500 个训练时期略有增加,但训练 RMSE 没有强烈增加。
![Diagnostic Line Plot of Train and Test Performance of 3 Hidden Neurons on the Shampoo Sales Dataset](https://img.kancloud.cn/2b/31/2b31b291f160a7d22d3df3c26f42674c_640x480.jpg)
训练诊断线图和 3 个隐藏神经元在洗发水销售数据集上的测试表现
## 具有滞后的变隐藏层神经元
在本节中,我们将考虑将滞后观测值作为输入增加,同时增加网络容量。
增加的滞后观察将自动缩放输入神经元的数量。例如,作为输入的 3 个滞后观察将导致 3 个输入神经元。
添加的输入将需要网络中的额外容量。因此,我们还将使用滞后观察的数量作为输入来缩放一个隐藏层中的神经元的数量。
我们将使用奇数个滞后观察作为 1,3,5 和 7 的输入,并分别使用相同数量的神经元。
输入数量的改变影响在将时间序列数据转换为监督学习问题期间的训练模式的总数。因此,对于本节中的所有实验,批量大小从 4 减少到 2。
在每次实验运行中总共使用 1000 个训练时期。
基础实验脚本的更改仅限于 _ 实验()_ 功能和实验运行,如下所示。
```py
# run a repeated experiment
def experiment(repeats, series, epochs, lag, neurons):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, lag)
supervised_values = supervised.values[lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(repeats):
# fit the model
batch_size = 2
model = fit_model(train_scaled, batch_size, epochs, neurons)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
output = model.predict(test_reshaped, batch_size=batch_size)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# experiment
repeats = 30
results = DataFrame()
epochs = 1000
# vary neurons
neurons = [1, 3, 5, 7]
for n in neurons:
results[str(n)] = experiment(repeats, series, epochs, n, n)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('boxplot_neurons_lag.png')
```
运行实验会使用每个配置的描述性统计信息汇总结果。
结果表明滞后输入变量的所有增加随隐藏神经元的增加而降低表现。
值得注意的是 1 个神经元和 1 个输入配置,与上一节的结果相比,产生了类似的均值和标准差。
表现的降低可能与较小的批量大小有关,并且 1-神经元/ 1 滞后情况的结果不足以解释这一点。
```py
1 3 5 7
count 30.000000 30.000000 30.000000 30.000000
mean 105.465038 109.447044 158.894730 147.024776
std 20.827644 15.312300 43.177520 22.717514
min 89.909627 77.426294 88.515319 95.801699
25% 92.187690 102.233491 125.008917 132.335683
50% 92.587411 109.506480 166.438582 145.078842
75% 135.386125 118.635143 189.457325 166.329000
max 139.941789 144.700754 232.962778 186.185471
```
还创建了结果分布的盒子和须状图,允许比较配置。
有趣的是,与其他配置相比,使用 3 个神经元和 3 个输入变量显示更紧密的传播。这类似于上一节中所见的 3 个神经元和 1 个输入变量的观察结果。
![Box and Whisker Plot of Varying Lag Features and Hidden Neurons for Time Series Forecasting on the Shampoo Sales Dataset](https://img.kancloud.cn/d5/d6/d5d636c5f066eba9808e78129cd0b159_640x480.jpg)
用于洗发水销售数据集的时间序列预测的变化滞后特征和隐藏神经元的盒子和晶须图
我们还可以使用诊断来梳理模型动态在拟合模型时可能发生的变化。
3-lag / 3-neurons 的结果很有意思,我们将进一步研究它们。
诊断脚本的更改仅限于 _run()_ 功能。
```py
# run diagnostic experiments
def run():
# config
repeats = 10
n_batch = 2
n_epochs = 1000
n_neurons = 3
n_lag = 3
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(repeats):
history = fit(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_neurons_lag.png')
```
运行诊断脚本会创建一个线图,显示在每个训练时期之后 10 次实验运行的训练和测试 RMSE。
结果表明在前 500 个时期内学习良好,并且可能在剩余的时期过度拟合,测试 RMSE 显示出增加的趋势,并且训练 RMSE 显示出下降趋势。
![Diagnostic Line Plot of Train and Test Performance of 3 Hidden Neurons and Lag Features on the Shampoo Sales Dataset](https://img.kancloud.cn/4b/16/4b168043eb73dd86d60bcf71169c8beb_640x480.jpg)
训练诊断线图和 3 个隐藏神经元的测试表现和洗发水销售数据集的滞后特征
## 审查结果
我们在本教程中介绍了很多内容。让我们来复习。
* **时代**。我们研究了模型技能如何随着训练时期的变化而变化,并发现 1000 可能是一个很好的起点。
* **神经元**。我们研究了隐藏层中神经元数量的变化,发现 3 个神经元可能是一个很好的配置。
* **滞后输入**。我们考虑将滞后观察的数量作为输入变化,同时增加隐藏层中神经元的数量,并发现结果通常变得更糟,但是隐藏层中的 3 个神经元显示出兴趣。与其他实验相比,差的结果可能与批量大小从 4 变为 2 有关。
结果表明,在隐藏层中使用 1 个滞后输入,3 个神经元,并且适合作为首次切割模型配置的 1000 个时期。
这可以通过多种方式得到改善;下一节列出了一些想法。
### 扩展
本节列出了您可能想要探索的扩展和后续实验。
* **Shuffle vs No Shuffle** 。没有使用洗牌,这是不正常的。在拟合时间序列预测模型时,开发一个实验来比较改组与训练集的无改组。
* **归一化方法**。数据重新调整为-1 到 1,这是 tanh 激活函数的典型值,未在模型配置中使用。探索其他重新缩放,例如 0-1 规范化和标准化以及对模型表现的影响。
* **多层**。探索使用多个隐藏层来增加网络容量,以了解更复杂的多步模式。
* **特色工程**。探索使用其他功能,例如错误时间序列,甚至每个观察的日期时间元素。
另外,看看帖子:
* [如何提高深度学习效能](http://machinelearningmastery.com/improve-deep-learning-performance/)
你尝试过这些扩展吗?
在以下评论中发布您的结果。
## 摘要
在本教程中,您了解了如何使用系统实验来探索多层感知器在时间序列预测中的配置,并开发出第一个切割模型。
具体来说,你学到了:
* 如何开发一个强大的测试工具来评估时间序列预测的 MLP 模型。
* 如何系统地评估训练时期,隐藏层神经元和滞后输入。
* 如何使用诊断来帮助解释结果并建议后续实验。
您对本教程有任何疑问吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程