# 学习使用编码器解码器LSTM循环神经网络添加数字
> 原文: [https://machinelearningmastery.com/learn-add-numbers-seq2seq-recurrent-neural-networks/](https://machinelearningmastery.com/learn-add-numbers-seq2seq-recurrent-neural-networks/)
长短期记忆(LSTM)网络是一种循环神经网络(RNN),能够学习输入序列中元素之间的关系。
LSTM的一个很好的演示是学习如何使用诸如和的数学运算将多个项组合在一起并输出计算结果。
初学者常犯的一个错误就是简单地学习从输入词到输出词的映射函数。关于这种问题的LSTM的良好演示涉及学习字符的排序输入(“50 + 11”)和以字符(“61”)预测序列输出。使用序列到序列或seq2seq(编码器 - 解码器),堆叠LSTM配置的LSTM可以学习这个难题。
在本教程中,您将了解如何使用LSTM解决添加随机生成的整数序列的问题。
完成本教程后,您将了解:
* 如何学习输入项的朴素映射函数来输出加法项。
* 如何构建添加问题(和类似问题)并适当地编码输入和输出。
* 如何使用seq2seq范例解决真正的序列预测添加问题。
让我们开始吧。
* **更新Aug / 2018** :修正了模型配置描述中的拼写错误。
![How to Learn to Add Numbers with seq2seq Recurrent Neural Networks](img/ba6b2b767f7039240f86040b472bd4d2.jpg)
如何学习使用seq2seq循环神经网络添加数字
照片由 [Lima Pix](https://www.flickr.com/photos/minhocos/11161305703/) ,保留一些权利。
## 教程概述
本教程分为3个部分;他们是:
1. 添加数字
2. 作为映射问题的添加(初学者的错误)
3. 作为seq2seq问题添加
### 环境
本教程假设安装了SciPy,NumPy,Pandas的Python 2或Python 3开发环境。
本教程还假设scikit-learn和Keras v2.0 +与Theano或TensorFlow后端一起安装。
如果您需要有关环境的帮助,请参阅帖子:
* [如何使用Anaconda设置用于机器学习和深度学习的Python环境](http://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 添加数字
任务是,给定一系列随机选择的整数,返回那些整数的总和。
例如,给定10 + 5,模型应输出15。
该模型将在随机生成的示例中进行训练和测试,以便学习添加数字的一般问题,而不是记住特定情况。
## 作为映射问题添加
(初学者的错误)
在本节中,我们将解决问题并使用LSTM解决它,并说明使初学者犯错误并且不利用循环神经网络的能力是多么容易。
### 数据生成
让我们首先定义一个函数来生成随机整数序列及其总和作为训练和测试数据。
我们可以使用 [randint()](https://docs.python.org/3/library/random.html)函数生成最小值和最大值之间的随机整数,例如介于1和100之间。然后我们可以对序列求和。该过程可以重复固定次数,以创建数字输入序列对和匹配的输出求和值。
例如,此代码段将创建100个在1到100之间添加2个数字的示例:
```py
from random import seed
from random import randint
seed(1)
X, y = list(), list()
for i in range(100):
in_pattern = [randint(1,100) for _ in range(2)]
out_pattern = sum(in_pattern)
print(in_pattern, out_pattern)
X.append(in_pattern)
y.append(out_pattern)
```
运行该示例将打印每个输入 - 输出对。
```py
...
[2, 97] 99
[97, 36] 133
[32, 35] 67
[15, 80] 95
[24, 45] 69
[38, 9] 47
[22, 21] 43
```
一旦我们有了模式,我们就可以将列表转换为NumPy Arrays并重新调整值。我们必须重新调整值以适应LSTM使用的激活范围。
例如:
```py
# format as NumPy arrays
X,y = array(X), array(y)
# normalize
X = X.astype('float') / float(100 * 2)
y = y.astype('float') / float(100 * 2)
```
综上所述,我们可以定义函数 _random_sum_pairs()_,它接受指定数量的示例,每个序列中的一些整数,以及生成和返回X,y对数据的最大整数造型。
```py
from random import randint
from numpy import array
# generate examples of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
# format as NumPy arrays
X,y = array(X), array(y)
# normalize
X = X.astype('float') / float(largest * n_numbers)
y = y.astype('float') / float(largest * n_numbers)
return X, y
```
我们可能希望稍后反转数字的重新缩放。这将有助于将预测值与预期值进行比较,并以与原始数据相同的单位获得错误分数的概念。
下面的 _invert()_函数反转了传入的预测值和期望值的标准化。
```py
# invert normalization
def invert(value, n_numbers, largest):
return round(value * float(largest * n_numbers))
```
### 配置LSTM
我们现在可以定义一个LSTM来模拟这个问题。
这是一个相对简单的问题,因此模型不需要非常大。输入层将需要1个输入功能和2个时间步长(在添加两个数字的情况下)。
定义了两个隐藏的LSTM层,第一个具有6个单元,第二个具有2个单元,接着是完全连接的输出层,其返回单个总和值。
在给定网络的实值输出的情况下,使用有效的ADAM优化算法来拟合模型以及均方误差损失函数。
```py
# create LSTM
model = Sequential()
model.add(LSTM(6, input_shape=(n_numbers, 1), return_sequences=True))
model.add(LSTM(6))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
```
该网络适用于100个时期,每个时期生成新的示例,并且在每个批次结束时执行重量更新。
```py
# train LSTM
for _ in range(n_epoch):
X, y = random_sum_pairs(n_examples, n_numbers, largest)
X = X.reshape(n_examples, n_numbers, 1)
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=2)
```
### LSTM评估
我们在100个新模式上评估网络。
生成这些并且为每个预测总和值。实际和预测的和值都被重新调整到原始范围,并且计算出具有与原始值相同的比例的均方根误差(RMSE)分数。最后,列出了约20个预期值和预测值的示例作为示例。
最后,列出了20个预期值和预测值的示例作为示例。
```py
# evaluate on some new patterns
X, y = random_sum_pairs(n_examples, n_numbers, largest)
X = X.reshape(n_examples, n_numbers, 1)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, n_numbers, largest) for x in y]
predicted = [invert(x, n_numbers, largest) for x in result[:,0]]
rmse = sqrt(mean_squared_error(expected, predicted))
print('RMSE: %f' % rmse)
# show some examples
for i in range(20):
error = expected[i] - predicted[i]
print('Expected=%d, Predicted=%d (err=%d)' % (expected[i], predicted[i], error))
```
## 完整的例子
我们可以将这一切联系起来。完整的代码示例如下所示。
```py
from random import seed
from random import randint
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
from sklearn.metrics import mean_squared_error
# generate examples of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
# format as NumPy arrays
X,y = array(X), array(y)
# normalize
X = X.astype('float') / float(largest * n_numbers)
y = y.astype('float') / float(largest * n_numbers)
return X, y
# invert normalization
def invert(value, n_numbers, largest):
return round(value * float(largest * n_numbers))
# generate training data
seed(1)
n_examples = 100
n_numbers = 2
largest = 100
# define LSTM configuration
n_batch = 1
n_epoch = 100
# create LSTM
model = Sequential()
model.add(LSTM(10, input_shape=(n_numbers, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# train LSTM
for _ in range(n_epoch):
X, y = random_sum_pairs(n_examples, n_numbers, largest)
X = X.reshape(n_examples, n_numbers, 1)
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=2)
# evaluate on some new patterns
X, y = random_sum_pairs(n_examples, n_numbers, largest)
X = X.reshape(n_examples, n_numbers, 1)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, n_numbers, largest) for x in y]
predicted = [invert(x, n_numbers, largest) for x in result[:,0]]
rmse = sqrt(mean_squared_error(expected, predicted))
print('RMSE: %f' % rmse)
# show some examples
for i in range(20):
error = expected[i] - predicted[i]
print('Expected=%d, Predicted=%d (err=%d)' % (expected[i], predicted[i], error))
```
运行该示例会在每个时期打印一些损失信息,并通过打印运行的RMSE和一些示例输出来完成。
结果并不完美,但很多例子都是正确预测的。
鉴于神经网络的随机性,您的具体输出可能会有所不同。
```py
RMSE: 0.565685
Expected=110, Predicted=110 (err=0)
Expected=122, Predicted=123 (err=-1)
Expected=104, Predicted=104 (err=0)
Expected=103, Predicted=103 (err=0)
Expected=163, Predicted=163 (err=0)
Expected=100, Predicted=100 (err=0)
Expected=56, Predicted=57 (err=-1)
Expected=61, Predicted=62 (err=-1)
Expected=109, Predicted=109 (err=0)
Expected=129, Predicted=130 (err=-1)
Expected=98, Predicted=98 (err=0)
Expected=60, Predicted=61 (err=-1)
Expected=66, Predicted=67 (err=-1)
Expected=63, Predicted=63 (err=0)
Expected=84, Predicted=84 (err=0)
Expected=148, Predicted=149 (err=-1)
Expected=96, Predicted=96 (err=0)
Expected=33, Predicted=34 (err=-1)
Expected=75, Predicted=75 (err=0)
Expected=64, Predicted=64 (err=0)
```
### 初学者的错误
一切都完成了吧?
错误。
我们解决的问题有多个输入但技术上不是序列预测问题。
实际上,您可以使用多层感知器(MLP)轻松解决它。例如:
```py
from random import seed
from random import randint
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
from sklearn.metrics import mean_squared_error
# generate examples of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
# format as NumPy arrays
X,y = array(X), array(y)
# normalize
X = X.astype('float') / float(largest * n_numbers)
y = y.astype('float') / float(largest * n_numbers)
return X, y
# invert normalization
def invert(value, n_numbers, largest):
return round(value * float(largest * n_numbers))
# generate training data
seed(1)
n_examples = 100
n_numbers = 2
largest = 100
# define LSTM configuration
n_batch = 2
n_epoch = 50
# create LSTM
model = Sequential()
model.add(Dense(4, input_dim=n_numbers))
model.add(Dense(2))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# train LSTM
for _ in range(n_epoch):
X, y = random_sum_pairs(n_examples, n_numbers, largest)
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=2)
# evaluate on some new patterns
X, y = random_sum_pairs(n_examples, n_numbers, largest)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, n_numbers, largest) for x in y]
predicted = [invert(x, n_numbers, largest) for x in result[:,0]]
rmse = sqrt(mean_squared_error(expected, predicted))
print('RMSE: %f' % rmse)
# show some examples
for i in range(20):
error = expected[i] - predicted[i]
print('Expected=%d, Predicted=%d (err=%d)' % (expected[i], predicted[i], error))
```
运行该示例可以完美地解决问题,并且可以在更少的时期内解决问题。
```py
RMSE: 0.000000
Expected=108, Predicted=108 (err=0)
Expected=143, Predicted=143 (err=0)
Expected=109, Predicted=109 (err=0)
Expected=16, Predicted=16 (err=0)
Expected=152, Predicted=152 (err=0)
Expected=59, Predicted=59 (err=0)
Expected=95, Predicted=95 (err=0)
Expected=113, Predicted=113 (err=0)
Expected=90, Predicted=90 (err=0)
Expected=104, Predicted=104 (err=0)
Expected=123, Predicted=123 (err=0)
Expected=92, Predicted=92 (err=0)
Expected=150, Predicted=150 (err=0)
Expected=136, Predicted=136 (err=0)
Expected=130, Predicted=130 (err=0)
Expected=76, Predicted=76 (err=0)
Expected=112, Predicted=112 (err=0)
Expected=129, Predicted=129 (err=0)
Expected=171, Predicted=171 (err=0)
Expected=127, Predicted=127 (err=0)
```
问题是我们将这么多的域编码到问题中,它将问题从序列预测问题转变为函数映射问题。
也就是说,输入的顺序不再重要。我们可以按照我们想要的任何方式改变它,并且仍然可以解决问题。
MLP旨在学习映射功能,并且可以轻松解决学习如何添加数字的问题。
一方面,这是一种更好的方法来解决添加数字的具体问题,因为模型更简单,结果更好。另一方面,它是反复神经网络的可怕用法。
这是一个初学者的错误,我看到在网络上的许多“ _LSTMs_ ”的介绍中被复制了。
## 作为序列预测问题的添加
帧添加的另一种方法使其成为明确的序列预测问题,反过来又使其难以解决。
我们可以将添加框架作为输入和输出字符串,让模型找出字符的含义。整个添加问题可以被构造为一串字符,例如输出“62”的“12 + 50”,或者更具体地说:
* 输入:['1','2','+','5','0']
* 输出:['6','2']
该模型不仅必须学习字符的整数性质,还要学习要执行的数学运算的性质。
注意序列现在如何重要,并且随机改组输入将创建一个与输出序列无关的无意义序列。
还要注意问题如何转换为同时具有输入和输出序列。这称为序列到序列预测问题,或称为seq2seq问题。
我们可以通过添加两个数字来保持简单,但我们可以看到这可以如何缩放到可变数量的术语和数学运算,可以作为模型的输入供学习和概括。
请注意,这个形式和本例的其余部分受到了Keras项目中[添加seq2seq示例](https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py)的启发,尽管我从头开始重新开发它。
### Data Generation
seq2seq定义问题的数据生成涉及更多。
我们将每件作为独立功能开发,以便您可以使用它们并了解它们的工作原理。在那里挂。
第一步是生成随机整数序列及其总和,如前所述,但没有归一化。我们可以把它放在一个名为 _random_sum_pairs()_的函数中,如下所示。
```py
from random import seed
from random import randint
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
seed(1)
n_samples = 1
n_numbers = 2
largest = 10
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
print(X, y)
```
仅运行此函数会打印一个在1到10之间添加两个随机整数的示例。
```py
[[3, 10]] [13]
```
下一步是将整数转换为字符串。输入字符串的格式为'99 +99',输出字符串的格式为'99'。
此函数的关键是数字填充,以确保每个输入和输出序列具有相同的字符数。填充字符应与数据不同,因此模型可以学习忽略它们。在这种情况下,我们使用空格字符填充('')并填充左侧的字符串,将信息保存在最右侧。
还有其他填充方法,例如单独填充每个术语。尝试一下,看看它是否会带来更好的表现。在下面的评论中报告您的结果。
填充需要我们知道最长序列可能有多长。我们可以通过获取我们可以生成的最大整数的 _log10()_和该数字的上限来轻松计算这个数,以了解每个数字需要多少个字符。我们将最大数字加1,以确保我们期望3个字符而不是2个字符,用于圆形最大数字的情况,例如200.我们需要添加正确数量的加号。
```py
max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
```
在输出序列上重复类似的过程,当然没有加号。
```py
max_length = ceil(log10(n_numbers * (largest+1)))
```
下面的示例添加 _to_string()_函数,并使用单个输入/输出对演示其用法。
```py
from random import seed
from random import randint
from math import ceil
from math import log10
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
# convert data to strings
def to_string(X, y, n_numbers, largest):
max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
Xstr = list()
for pattern in X:
strp = '+'.join([str(n) for n in pattern])
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
Xstr.append(strp)
max_length = ceil(log10(n_numbers * (largest+1)))
ystr = list()
for pattern in y:
strp = str(pattern)
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
ystr.append(strp)
return Xstr, ystr
seed(1)
n_samples = 1
n_numbers = 2
largest = 10
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
print(X, y)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
print(X, y)
```
运行此示例首先打印整数序列和相同序列的填充字符串表示。
```py
[[3, 10]] [13]
[' 3+10'] ['13']
```
接下来,我们需要将字符串中的每个字符编码为整数值。毕竟我们必须处理神经网络中的数字,而不是字符。
整数编码将问题转换为分类问题,其中输出序列可以被视为具有11个可能值的类输出。这恰好是具有一些序数关系的整数(前10个类值)。
要执行此编码,我们必须定义可能出现在字符串编码中的完整符号字母,如下所示:
```py
alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']
```
然后,整数编码变成了一个简单的过程,即将字符的查找表构建为整数偏移量,并逐个转换每个字符串的每个字符。
下面的示例为整数编码提供了 _integer_encode()_函数,并演示了如何使用它。
```py
from random import seed
from random import randint
from math import ceil
from math import log10
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
# convert data to strings
def to_string(X, y, n_numbers, largest):
max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
Xstr = list()
for pattern in X:
strp = '+'.join([str(n) for n in pattern])
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
Xstr.append(strp)
max_length = ceil(log10(n_numbers * (largest+1)))
ystr = list()
for pattern in y:
strp = str(pattern)
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
ystr.append(strp)
return Xstr, ystr
# integer encode strings
def integer_encode(X, y, alphabet):
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
Xenc = list()
for pattern in X:
integer_encoded = [char_to_int[char] for char in pattern]
Xenc.append(integer_encoded)
yenc = list()
for pattern in y:
integer_encoded = [char_to_int[char] for char in pattern]
yenc.append(integer_encoded)
return Xenc, yenc
seed(1)
n_samples = 1
n_numbers = 2
largest = 10
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
print(X, y)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
print(X, y)
# integer encode
alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']
X, y = integer_encode(X, y, alphabet)
print(X, y)
```
运行该示例将打印每个字符串编码模式的整数编码版本。
我们可以看到空格字符('')用11编码,三个字符('3')编码为3,依此类推。
```py
[[3, 10]] [13]
[' 3+10'] ['13']
[[11, 3, 10, 1, 0]] [[1, 3]]
```
下一步是对整数编码序列进行二进制编码。
这涉及将每个整数转换为具有与字母表相同长度的二进制向量,并用1标记特定整数。
例如,0整数表示'0'字符,并且将被编码为二元向量,其中11元素向量的第0个位置为1:[1,0,0,0,0,0,0,0, 0,0,0,0]。
下面的示例为二进制编码定义了 _one_hot_encode()_函数,并演示了如何使用它。
```py
from random import seed
from random import randint
from math import ceil
from math import log10
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
# convert data to strings
def to_string(X, y, n_numbers, largest):
max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
Xstr = list()
for pattern in X:
strp = '+'.join([str(n) for n in pattern])
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
Xstr.append(strp)
max_length = ceil(log10(n_numbers * (largest+1)))
ystr = list()
for pattern in y:
strp = str(pattern)
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
ystr.append(strp)
return Xstr, ystr
# integer encode strings
def integer_encode(X, y, alphabet):
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
Xenc = list()
for pattern in X:
integer_encoded = [char_to_int[char] for char in pattern]
Xenc.append(integer_encoded)
yenc = list()
for pattern in y:
integer_encoded = [char_to_int[char] for char in pattern]
yenc.append(integer_encoded)
return Xenc, yenc
# one hot encode
def one_hot_encode(X, y, max_int):
Xenc = list()
for seq in X:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
Xenc.append(pattern)
yenc = list()
for seq in y:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
yenc.append(pattern)
return Xenc, yenc
seed(1)
n_samples = 1
n_numbers = 2
largest = 10
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
print(X, y)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
print(X, y)
# integer encode
alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']
X, y = integer_encode(X, y, alphabet)
print(X, y)
# one hot encode
X, y = one_hot_encode(X, y, len(alphabet))
print(X, y)
```
运行该示例为每个整数编码打印二进制编码序列。
我添加了一些新行,使输入和输出二进制编码更清晰。
您可以看到单个和模式变为5个二进制编码向量的序列,每个向量具有11个元素。输出或总和变为2个二进制编码向量的序列,每个向量再次具有11个元素。
```py
[[3, 10]] [13]
[' 3+10'] ['13']
[[11, 3, 10, 1, 0]] [[1, 3]]
[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]
[[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]]
```
我们可以将所有这些步骤绑定到一个名为 _generate_data()_的函数中,如下所示。
```py
# generate an encoded dataset
def generate_data(n_samples, n_numbers, largest, alphabet):
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
# integer encode
X, y = integer_encode(X, y, alphabet)
# one hot encode
X, y = one_hot_encode(X, y, len(alphabet))
# return as numpy arrays
X, y = array(X), array(y)
return X, y
```
最后,我们需要反转编码以将输出向量转换回数字,以便我们可以将预期的输出整数与预测的整数进行比较。
下面的 _invert()_功能执行此操作。关键是首先使用 _argmax()_函数将二进制编码转换回整数,然后使用整数反向映射到字母表中的字符将整数转换回字符。
```py
# invert encoding
def invert(seq, alphabet):
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
strings = list()
for pattern in seq:
string = int_to_char[argmax(pattern)]
strings.append(string)
return ''.join(strings)
```
我们现在拥有为此示例准备数据所需的一切。
注意,这些函数是为这篇文章编写的,我没有编写任何单元测试,也没有用各种输入对它们进行战斗测试。如果您发现或发现明显的错误,请在下面的评论中告诉我。
### 配置并调整seq2seq LSTM模型
我们现在可以在这个问题上使用LSTM模型。
我们可以认为该模型由两个关键部分组成:编码器和解码器。
首先,输入序列一次向网络显示一个编码字符。我们需要一个编码级别来学习输入序列中的步骤之间的关系,并开发这些关系的内部表示。
网络的输入(对于两个数字的情况)是一系列5个编码字符(每个整数2个,“+”一个),其中每个向量包含11个可能字符的11个特征,序列中的每个项目可能是。
编码器将使用具有100个单位的单个LSTM隐藏层。
```py
model = Sequential()
model.add(LSTM(100, input_shape=(5, 11)))
```
解码器必须将输入序列的学习内部表示转换为正确的输出序列。为此,我们将使用具有50个单位的隐藏层LSTM,然后是输出层。
该问题被定义为需要两个输出字符的二进制输出向量。我们将使用相同的完全连接层(Dense)来输出每个二进制向量。要两次使用同一层,我们将它包装在TimeDistributed()包装层中。
输出完全连接层将使用 [softmax激活函数](https://en.wikipedia.org/wiki/Softmax_function)输出[0,1]范围内的值。
```py
model.add(LSTM(50, return_sequences=True))
model.add(TimeDistributed(Dense(11, activation='softmax')))
```
但是有一个问题。
我们必须将编码器连接到解码器,它们不适合。
也就是说,编码器将为5个向量序列中的每个输入产生100个输出的2维矩阵。解码器是LSTM层,其期望[样本,时间步长,特征]的3D输入,以便产生具有2个时间步长的每个具有11个特征的1个样本的解码序列。
如果您尝试将这些碎片强制在一起,则会出现如下错误:
```py
ValueError: Input 0 is incompatible with layer lstm_2: expected ndim=3, found ndim=2
```
正如我们所期望的那样。
我们可以使用 [RepeatVector](https://keras.io/layers/core/#repeatvector) 层来解决这个问题。该层简单地重复提供的2D输入n次以创建3D输出。
RepeatVector层可以像适配器一样使用,以将网络的编码器和解码器部分组合在一起。我们可以配置RepeatVector重复输入2次。这将创建一个3D输出,包括两个来自编码器的序列输出副本,我们可以使用相同的完全连接层对两个所需输出向量中的每一个进行两次解码。
```py
model.add(RepeatVector(2))
```
该问题被定义为11类的分类问题,因此我们可以优化对数损失( _categorical_crossentropy_ )函数,甚至可以跟踪每个训练时期的准确性和损失。
把这些放在一起,我们有:
```py
# define LSTM configuration
n_batch = 10
n_epoch = 30
# create LSTM
model = Sequential()
model.add(LSTM(100, input_shape=(n_in_seq_length, n_chars)))
model.add(RepeatVector(n_out_seq_length))
model.add(LSTM(50, return_sequences=True))
model.add(TimeDistributed(Dense(n_chars, activation='softmax')))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# train LSTM
for i in range(n_epoch):
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
print(i)
model.fit(X, y, epochs=1, batch_size=n_batch)
```
### 为什么使用RepeatVector层?
为什么不将编码器的序列输出作为解码器的输入返回?
也就是说,每个输入序列时间步长的每个LSTM的一个输出而不是整个输入序列的每个LSTM的一个输出。
```py
model.add(LSTM(100, input_shape=(n_in_seq_length, n_chars), return_sequences=True))
```
输入序列的每个步骤的输出使解码器在每个步骤访问输入序列的中间表示。这可能有用也可能没用。在输入序列的末尾提供最终LSTM输出可能更符合逻辑,因为它捕获有关整个输入序列的信息,准备映射到或计算输出。
此外,这不会在网络中留下任何内容来指定除输入之外的解码器的大小,为输入序列的每个时间步长提供一个输出值(5而不是2)。
您可以将输出重构为由空格填充的5个字符的序列。网络将完成比所需更多的工作,并且可能失去编码器 - 解码器范例提供的一些压缩类型能力。试试看吧。
标题为“[”的问题是序列到序列学习吗?](https://github.com/fchollet/keras/issues/395) “关于Keras GitHub项目提供了一些你可以使用的替代表示的良好讨论。
### 评估LSTM模型
和以前一样,我们可以生成一批新的示例,并在算法适合后对其进行评估。
我们可以根据预测计算RMSE分数,尽管我在这里为了简单起见而将其排除在外。
```py
# evaluate on some new patterns
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, alphabet) for x in y]
predicted = [invert(x, alphabet) for x in result]
# show some examples
for i in range(20):
print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))
```
### 完整的例子
总而言之,下面列出了完整的示例。
```py
from random import seed
from random import randint
from numpy import array
from math import ceil
from math import log10
from math import sqrt
from numpy import argmax
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import TimeDistributed
from keras.layers import RepeatVector
# generate lists of random integers and their sum
def random_sum_pairs(n_examples, n_numbers, largest):
X, y = list(), list()
for i in range(n_examples):
in_pattern = [randint(1,largest) for _ in range(n_numbers)]
out_pattern = sum(in_pattern)
X.append(in_pattern)
y.append(out_pattern)
return X, y
# convert data to strings
def to_string(X, y, n_numbers, largest):
max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
Xstr = list()
for pattern in X:
strp = '+'.join([str(n) for n in pattern])
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
Xstr.append(strp)
max_length = ceil(log10(n_numbers * (largest+1)))
ystr = list()
for pattern in y:
strp = str(pattern)
strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp
ystr.append(strp)
return Xstr, ystr
# integer encode strings
def integer_encode(X, y, alphabet):
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
Xenc = list()
for pattern in X:
integer_encoded = [char_to_int[char] for char in pattern]
Xenc.append(integer_encoded)
yenc = list()
for pattern in y:
integer_encoded = [char_to_int[char] for char in pattern]
yenc.append(integer_encoded)
return Xenc, yenc
# one hot encode
def one_hot_encode(X, y, max_int):
Xenc = list()
for seq in X:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
Xenc.append(pattern)
yenc = list()
for seq in y:
pattern = list()
for index in seq:
vector = [0 for _ in range(max_int)]
vector[index] = 1
pattern.append(vector)
yenc.append(pattern)
return Xenc, yenc
# generate an encoded dataset
def generate_data(n_samples, n_numbers, largest, alphabet):
# generate pairs
X, y = random_sum_pairs(n_samples, n_numbers, largest)
# convert to strings
X, y = to_string(X, y, n_numbers, largest)
# integer encode
X, y = integer_encode(X, y, alphabet)
# one hot encode
X, y = one_hot_encode(X, y, len(alphabet))
# return as numpy arrays
X, y = array(X), array(y)
return X, y
# invert encoding
def invert(seq, alphabet):
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
strings = list()
for pattern in seq:
string = int_to_char[argmax(pattern)]
strings.append(string)
return ''.join(strings)
# define dataset
seed(1)
n_samples = 1000
n_numbers = 2
largest = 10
alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']
n_chars = len(alphabet)
n_in_seq_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1
n_out_seq_length = ceil(log10(n_numbers * (largest+1)))
# define LSTM configuration
n_batch = 10
n_epoch = 30
# create LSTM
model = Sequential()
model.add(LSTM(100, input_shape=(n_in_seq_length, n_chars)))
model.add(RepeatVector(n_out_seq_length))
model.add(LSTM(50, return_sequences=True))
model.add(TimeDistributed(Dense(n_chars, activation='softmax')))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
# train LSTM
for i in range(n_epoch):
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
print(i)
model.fit(X, y, epochs=1, batch_size=n_batch)
# evaluate on some new patterns
X, y = generate_data(n_samples, n_numbers, largest, alphabet)
result = model.predict(X, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, alphabet) for x in y]
predicted = [invert(x, alphabet) for x in result]
# show some examples
for i in range(20):
print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))
```
运行示例几乎完全符合问题。事实上,运行更多的迭代或增加每个迭代的重量更新( _batch_size = 1_ )会让你到达那里,但需要10倍的时间来训练。
我们可以看到预测的结果与我们看到的前20个例子的预期结果相符。
```py
...
Epoch 1/1
1000/1000 [==============================] - 2s - loss: 0.0579 - acc: 0.9940
Expected=13, Predicted=13
Expected=13, Predicted=13
Expected=13, Predicted=13
Expected= 9, Predicted= 9
Expected=11, Predicted=11
Expected=18, Predicted=18
Expected=15, Predicted=15
Expected=14, Predicted=14
Expected= 6, Predicted= 6
Expected=15, Predicted=15
Expected= 9, Predicted= 9
Expected=10, Predicted=10
Expected= 8, Predicted= 8
Expected=14, Predicted=14
Expected=14, Predicted=14
Expected=19, Predicted=19
Expected= 4, Predicted= 4
Expected=13, Predicted=13
Expected= 9, Predicted= 9
Expected=12, Predicted=12
```
## 扩展
本节列出了您可能希望探索的本教程的一些自然扩展。
* **整数编码**。探索问题是否可以单独使用整数编码来更好地了解问题。大多数输入之间的序数关系可能非常有用。
* **变量号**。更改示例以在每个输入序列上支持可变数量的术语。只要执行足够的填充,这应该是直截了当的。
* **可变数学运算**。更改示例以改变数学运算,以允许网络进一步概括。
* **括号**。允许使用括号和其他数学运算。
你尝试过这些扩展吗?
在评论中分享您的发现;我很想看到你发现了什么。
## 进一步阅读
本节列出了一些可供进一步阅读的资源以及您可能觉得有用的其他相关示例。
### 文件
* [神经网络序列学习](https://arxiv.org/pdf/1409.3215.pdf),2014 [PDF]
* [使用RNN编码器 - 解码器进行统计机器翻译的学习短语表示](https://arxiv.org/pdf/1406.1078.pdf),2014 [PDF]
* [LSTM可以解决困难的长时滞问题](https://papers.nips.cc/paper/1215-lstm-can-solve-hard-long-time-lag-problems.pdf) [PDF]
* [学会执行](https://arxiv.org/pdf/1410.4615.pdf),2014 [PDF]
### 代码和帖子
* [Keras加法示例](https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py)
* [烤宽面条中的加法示例](https://github.com/Lasagne/Lasagne/blob/master/examples/recurrent.py)
* [RNN加成(一年级)](http://projects.rajivshah.com/blog/2016/04/05/rnn_addition/)和[笔记本](https://gist.github.com/rajshah4/aa6c67944f4a43a7c9a1204301788e0c)
* [任何人都可以学习用Python编写LSTM-RNN(第1部分:RNN)](https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/)
* [Tensorflow中50行LSTM的简单实现](https://gist.github.com/nivwusquorum/b18ce332bde37e156034e5d3f60f8a23)
## 摘要
在本教程中,您了解了如何开发LSTM网络以了解如何使用seq2seq堆叠LSTM范例将随机整数添加到一起。
具体来说,你学到了:
* 如何学习输入项的朴素映射函数来输出加法项。
* 如何构建添加问题(和类似问题)并适当地编码输入和输出。
* 如何使用seq2seq范例解决真正的序列预测添加问题。
你有任何问题吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程