# 如何用Python从头开始实现学习向量量化
> 原文: [https://machinelearningmastery.com/implement-learning-vector-quantization-scratch-python/](https://machinelearningmastery.com/implement-learning-vector-quantization-scratch-python/)
[k-最近邻居](http://machinelearningmastery.com/k-nearest-neighbors-for-machine-learning/)的限制是您必须保留一个大型训练样例数据库才能进行预测。
[学习向量量化](http://machinelearningmastery.com/learning-vector-quantization-for-machine-learning/)算法通过学习最能代表训练数据的更小的模式子集来解决这个问题。
在本教程中,您将了解如何使用Python从头开始实现学习向量量化算法。
完成本教程后,您将了解:
* 如何从训练数据集中学习一组码本向量。
* 如何使用学习的码本向量进行预测。
* 如何将学习向量量化应用于实际预测建模问题。
让我们开始吧。
* **2017年1月更新**:将cross_validation_split()中的fold_size计算更改为始终为整数。修复了Python 3的问题。
* **更新Aug / 2018** :经过测试和更新,可与Python 3.6配合使用。
![How To Implement Learning Vector Quantization From Scratch With Python](img/9116ae5fdf9659e09d1603c386bd07bd.jpg)
如何用Python从头开始实现学习向量量化
照片由 [Tony Faiola](https://www.flickr.com/photos/tonyfaiola/10303914233/) ,保留一些权利。
## 描述
本节简要介绍了学习向量量化算法和我们将在本教程中使用的电离层分类问题
### 学习向量量化
学习向量量化(LVQ)算法很像k-Nearest Neighbors。
通过在模式库中找到最佳匹配来进行预测。不同之处在于,模式库是从训练数据中学习的,而不是使用训练模式本身。
模式库称为码本向量,每个模式称为码本。将码本向量初始化为来自训练数据集的随机选择的值。然后,在许多时期,它们适于使用学习算法最佳地总结训练数据。
学习算法一次显示一个训练记录,在码本向量中找到最佳匹配单元,如果它们具有相同的类,则将其移动到更接近训练记录,或者如果它们具有不同的类,则更远离训练记录。
一旦准备好,码本向量用于使用k-Nearest Neighbors算法进行预测,其中k = 1。
该算法是为分类预测建模问题而开发的,但可以适用于回归问题。
### 电离层数据集
电离层数据集根据雷达返回数据预测电离层的结构。
每个实例都描述了大气层雷达回波的特性,任务是预测电离层中是否存在结构。
共有351个实例和34个数字输入变量,每对雷达脉冲有17对2,通常具有0-1的相同比例。类值是一个字符串,其值为“g”表示良好返回,“b”表示不良返回。
使用零规则算法预测具有最多观测值的类,可以实现64.286%的基线准确度。
您可以从 [UCI机器学习库](https://archive.ics.uci.edu/ml/datasets/Ionosphere)了解更多信息并下载数据集。
下载数据集并将其放在当前工作目录中,名称为 **ionosphere.csv** 。
## 教程
本教程分为4个部分:
1. 欧几里德距离。
2. 最佳匹配单位。
3. 训练码本向量。
4. 电离层案例研究。
这些步骤将为实现LVQ算法并将其应用于您自己的预测建模问题奠定基础。
### 欧几里德距离
需要的第一步是计算数据集中两行之间的距离。
数据行主要由数字组成,计算两行或数字向量之间的距离的简单方法是绘制一条直线。这在2D或3D中是有意义的,并且可以很好地扩展到更高的尺寸。
我们可以使用欧几里德距离测量来计算两个向量之间的直线距离。它被计算为两个向量之间的平方差之和的平方根。
```py
distance = sqrt( sum( (x1_i - x2_i)^2 )
```
其中 **x1** 是第一行数据, **x2** 是第二行数据, **i** 是特定列的索引,因为我们对所有列求和。
对于欧几里德距离,值越小,两个记录就越相似。值为0表示两个记录之间没有差异。
下面是一个名为 **euclidean_distance()**的函数,它在Python中实现了这一功能。
```py
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2
return sqrt(distance)
```
您可以看到该函数假定每行中的最后一列是从距离计算中忽略的输出值。
我们可以用一个小的人为分类数据集测试这个距离函数。当我们构造LVQ算法所需的元素时,我们将使用该数据集几次。
```py
X1 X2 Y
2.7810836 2.550537003 0
1.465489372 2.362125076 0
3.396561688 4.400293529 0
1.38807019 1.850220317 0
3.06407232 3.005305973 0
7.627531214 2.759262235 1
5.332441248 2.088626775 1
6.922596716 1.77106367 1
8.675418651 -0.242068655 1
7.673756466 3.508563011 1
```
综上所述,我们可以编写一个小例子,通过打印第一行和所有其他行之间的距离来测试我们的距离函数。我们希望第一行和它自己之间的距离为0,这是一个值得注意的好事。
下面列出了完整的示例。
```py
from math import sqrt
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2
return sqrt(distance)
# Test distance function
dataset = [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
row0 = dataset[0]
for row in dataset:
distance = euclidean_distance(row0, row)
print(distance)
```
运行此示例将打印数据集中第一行和每一行之间的距离,包括其自身。
```py
0.0
1.32901739153
1.94946466557
1.55914393855
0.535628072194
4.85094018699
2.59283375995
4.21422704263
6.52240998823
4.98558538245
```
现在是时候使用距离计算来定位数据集中的最佳匹配单位。
### 2.最佳匹配单位
最佳匹配单元或BMU是与新数据最相似的码本向量。
要在数据集中找到BMU以获取新的数据,我们必须首先计算每个码本与新数据之间的距离。我们可以使用上面的距离函数来做到这一点。
计算距离后,我们必须按照与新数据的距离对所有码本进行排序。然后我们可以返回第一个或最相似的码本向量。
我们可以通过跟踪数据集中每个记录的距离作为元组来进行此操作,按距离(按降序排序)对元组列表进行排序,然后检索BMU。
下面是一个名为 **get_best_matching_unit()**的函数,它实现了这个功能。
```py
# Locate the best matching unit
def get_best_matching_unit(codebooks, test_row):
distances = list()
for codebook in codebooks:
dist = euclidean_distance(codebook, test_row)
distances.append((codebook, dist))
distances.sort(key=lambda tup: tup[1])
return distances[0][0]
```
您可以看到上一步中开发的 **euclidean_distance()**函数用于计算每个码本与新 **test_row** 之间的距离。
在使用自定义键的情况下对码本和距离元组的列表进行排序,以确保在排序操作中使用元组中的第二项( **tup [1]** )。
最后,返回顶部或最相似的码本向量作为BMU。
我们可以使用上一节中准备的小型人为数据集来测试此功能。
下面列出了完整的示例。
```py
from math import sqrt
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2
return sqrt(distance)
# Locate the best matching unit
def get_best_matching_unit(codebooks, test_row):
distances = list()
for codebook in codebooks:
dist = euclidean_distance(codebook, test_row)
distances.append((codebook, dist))
distances.sort(key=lambda tup: tup[1])
return distances[0][0]
# Test best matching unit function
dataset = [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
test_row = dataset[0]
bmu = get_best_matching_unit(dataset, test_row)
print(bmu)
```
运行此示例将数据集中的BMU打印到第一个记录。正如预期的那样,第一条记录与自身最相似,位于列表的顶部。
```py
[2.7810836, 2.550537003, 0]
```
使用一组码本向量进行预测是一回事。
我们使用1最近邻居算法。也就是说,对于我们希望进行预测的每个新模式,我们在集合中找到最相似的码本向量并返回其关联的类值。
现在我们知道如何从一组码本向量中获得最佳匹配单元,我们需要学习如何训练它们。
### 3.训练码本向量
训练一组码本向量的第一步是初始化该集合。
我们可以使用训练数据集中随机特征构建的模式对其进行初始化。
下面是一个名为 **random_codebook()**的函数,它实现了这个功能。从训练数据中选择随机输入和输出特征。
```py
# Create a random codebook vector
def random_codebook(train):
n_records = len(train)
n_features = len(train[0])
codebook = [train[randrange(n_records)][i] for i in range(n_features)]
return codebook
```
在将码本向量初始化为随机集之后,必须调整它们以最好地总结训练数据。
这是迭代完成的。
1. **时期**:在顶层,对于固定数量的时期或训练数据的曝光重复该过程。
2. **训练数据集**:在一个时期内,每次使用一个训练模式来更新该码本向量集。
3. **模式特征**:对于给定的训练模式,更新最佳匹配码本向量的每个特征以使其移近或远离。
为每个训练模式找到最佳匹配单元,并且仅更新该最佳匹配单元。训练模式和BMU之间的差异被计算为误差。比较类值(假定为列表中的最后一个值)。如果它们匹配,则将错误添加到BMU以使其更接近训练模式,否则,将其减去以将其推得更远。
调整BMU的量由学习率控制。这是对所有BMU所做更改量的加权。例如,学习率为0.3意味着BMU仅移动了训练模式和BMU之间的误差或差异的30%。
此外,调整学习率以使其在第一时期具有最大效果并且随着训练继续进行直到其在最后时期中具有最小效果的效果较小。这称为线性衰减学习率计划,也可用于人工神经网络。
我们可以按时期总结学习率的衰减如下:
```py
rate = learning_rate * (1.0 - (epoch/total_epochs))
```
我们可以通过假设学习率为0.3和10个时期来测试这个等式。每个时期的学习率如下:
```py
Epoch Effective Learning Rate
0 0.3
1 0.27
2 0.24
3 0.21
4 0.18
5 0.15
6 0.12
7 0.09
8 0.06
9 0.03
```
我们可以把所有这些放在一起。下面是一个名为 **train_codebooks()**的函数,它实现了在给定训练数据集的情况下训练一组码本向量的过程。
该函数对训练数据集,创建和训练的码本向量的数量,初始学习率和训练码本向量的时期数量采用3个附加参数。
您还可以看到该函数记录每个时期的总和平方误差,并打印一条消息,显示时期编号,有效学习率和总和平方误差分数。在调试训练函数或给定预测问题的特定配置时,这很有用。
您可以看到使用 **random_codebook()**初始化码本向量和 **get_best_matching_unit()**函数来查找一个迭代内每个训练模式的BMU。
```py
# Train a set of codebook vectors
def train_codebooks(train, n_codebooks, lrate, epochs):
codebooks = [random_codebook(train) for i in range(n_codebooks)]
for epoch in range(epochs):
rate = lrate * (1.0-(epoch/float(epochs)))
sum_error = 0.0
for row in train:
bmu = get_best_matching_unit(codebooks, row)
for i in range(len(row)-1):
error = row[i] - bmu[i]
sum_error += error**2
if bmu[-1] == row[-1]:
bmu[i] += rate * error
else:
bmu[i] -= rate * error
print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, rate, sum_error))
return codebooks
```
我们可以将它与上面的示例结合起来,为我们设计的数据集学习一组代码簿向量。
以下是完整的示例。
```py
from math import sqrt
from random import randrange
from random import seed
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2
return sqrt(distance)
# Locate the best matching unit
def get_best_matching_unit(codebooks, test_row):
distances = list()
for codebook in codebooks:
dist = euclidean_distance(codebook, test_row)
distances.append((codebook, dist))
distances.sort(key=lambda tup: tup[1])
return distances[0][0]
# Create a random codebook vector
def random_codebook(train):
n_records = len(train)
n_features = len(train[0])
codebook = [train[randrange(n_records)][i] for i in range(n_features)]
return codebook
# Train a set of codebook vectors
def train_codebooks(train, n_codebooks, lrate, epochs):
codebooks = [random_codebook(train) for i in range(n_codebooks)]
for epoch in range(epochs):
rate = lrate * (1.0-(epoch/float(epochs)))
sum_error = 0.0
for row in train:
bmu = get_best_matching_unit(codebooks, row)
for i in range(len(row)-1):
error = row[i] - bmu[i]
sum_error += error**2
if bmu[-1] == row[-1]:
bmu[i] += rate * error
else:
bmu[i] -= rate * error
print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, rate, sum_error))
return codebooks
# Test the training function
seed(1)
dataset = [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
learn_rate = 0.3
n_epochs = 10
n_codebooks = 2
codebooks = train_codebooks(dataset, n_codebooks, learn_rate, n_epochs)
print('Codebooks: %s' % codebooks)
```
运行该示例训练一组2个码本向量用于10个时期,初始学习率为0.3。每个时期打印细节,并显示从训练数据中学习的一组2个码本向量。
我们可以看到学习率的变化符合我们上面针对每个时期探讨的期望。我们还可以看到,每个时期的总和平方误差在训练结束时继续下降,并且可能有机会进一步调整示例以实现更少的错误。
```py
>epoch=0, lrate=0.300, error=43.270
>epoch=1, lrate=0.270, error=30.403
>epoch=2, lrate=0.240, error=27.146
>epoch=3, lrate=0.210, error=26.301
>epoch=4, lrate=0.180, error=25.537
>epoch=5, lrate=0.150, error=24.789
>epoch=6, lrate=0.120, error=24.058
>epoch=7, lrate=0.090, error=23.346
>epoch=8, lrate=0.060, error=22.654
>epoch=9, lrate=0.030, error=21.982
Codebooks: [[2.432316086217663, 2.839821664184211, 0], [7.319592257892681, 1.97013382654341, 1]]
```
现在我们知道如何训练一组码本向量,让我们看看如何在真实数据集上使用这个算法。
### 4.电离层案例研究
在本节中,我们将学习向量量化算法应用于电离层数据集。
第一步是加载数据集并将加载的数据转换为我们可以与欧氏距离计算一起使用的数字。为此我们将使用辅助函数 **load_csv()**来加载文件, **str_column_to_float()**将字符串数转换为浮点数, **str_column_to_int()**转换为class列到整数值。
我们将使用5倍折叠交叉验证来评估算法。这意味着每个折叠中将有351/5 = 70.2或仅超过70个记录。我们将使用辅助函数 **evaluate_algorithm()**来评估具有交叉验证的算法和 **accuracy_metric()**来计算预测的准确性。
The complete example is listed below.
```py
# LVQ for the Ionosphere Dataset
from random import seed
from random import randrange
from csv import reader
from math import sqrt
# Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# Convert string column to integer
def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# calculate the Euclidean distance between two vectors
def euclidean_distance(row1, row2):
distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2
return sqrt(distance)
# Locate the best matching unit
def get_best_matching_unit(codebooks, test_row):
distances = list()
for codebook in codebooks:
dist = euclidean_distance(codebook, test_row)
distances.append((codebook, dist))
distances.sort(key=lambda tup: tup[1])
return distances[0][0]
# Make a prediction with codebook vectors
def predict(codebooks, test_row):
bmu = get_best_matching_unit(codebooks, test_row)
return bmu[-1]
# Create a random codebook vector
def random_codebook(train):
n_records = len(train)
n_features = len(train[0])
codebook = [train[randrange(n_records)][i] for i in range(n_features)]
return codebook
# Train a set of codebook vectors
def train_codebooks(train, n_codebooks, lrate, epochs):
codebooks = [random_codebook(train) for i in range(n_codebooks)]
for epoch in range(epochs):
rate = lrate * (1.0-(epoch/float(epochs)))
for row in train:
bmu = get_best_matching_unit(codebooks, row)
for i in range(len(row)-1):
error = row[i] - bmu[i]
if bmu[-1] == row[-1]:
bmu[i] += rate * error
else:
bmu[i] -= rate * error
return codebooks
# LVQ Algorithm
def learning_vector_quantization(train, test, n_codebooks, lrate, epochs):
codebooks = train_codebooks(train, n_codebooks, lrate, epochs)
predictions = list()
for row in test:
output = predict(codebooks, row)
predictions.append(output)
return(predictions)
# Test LVQ on Ionosphere dataset
seed(1)
# load and prepare data
filename = 'ionosphere.csv'
dataset = load_csv(filename)
for i in range(len(dataset[0])-1):
str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
learn_rate = 0.3
n_epochs = 50
n_codebooks = 20
scores = evaluate_algorithm(dataset, learning_vector_quantization, n_folds, n_codebooks, learn_rate, n_epochs)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
```
运行此示例将打印每个折叠的分类准确度以及所有折叠的平均分类精度。
我们可以看出,87.143%的准确率优于64.286%的基线。我们还可以看到,我们的20个码本向量库远远少于保存整个训练数据集。
```py
Scores: [90.0, 88.57142857142857, 84.28571428571429, 87.14285714285714, 85.71428571428571]
Mean Accuracy: 87.143%
```
## 扩展
本节列出了您可能希望探索的教程的扩展。
* **调谐参数**。上述示例中的参数未进行调整,请尝试使用不同的值来提高分类准确度。
* **不同的距离测量**。尝试不同的距离测量,如曼哈顿距离和闵可夫斯基距离。
* **多次通过LVQ** 。可以通过多次训练运行来更新码本向量。通过大学习率的训练进行实验,接着是大量具有较小学习率的时期来微调码本。
* **更新更多BMU** 。尝试在训练时选择多个BMU,并将其从训练数据中拉出。
* **更多问题**。将LVQ应用于UCI机器学习存储库中的更多分类问题。
**你有没有探索过这些扩展?**
在下面的评论中分享您的经验。
## 评论
在本教程中,您了解了如何在Python中从头开始实现学习向量量化算法。
具体来说,你学到了:
* 如何计算模式之间的距离并找到最佳匹配单元。
* 如何训练一组码本向量以最好地总结训练数据集。
* 如何将学习向量量化算法应用于实际预测建模问题。
**你有什么问题吗?**
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q&amp; A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程