# 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
> 原文: [https://machinelearningmastery.com/how-to-use-the-timeseriesgenerator-for-time-series-forecasting-in-keras/](https://machinelearningmastery.com/how-to-use-the-timeseriesgenerator-for-time-series-forecasting-in-keras/)
必须将时间序列数据转换为具有输入和输出组件的样本结构,然后才能用于拟合监督学习模型。
如果您必须手动执行此转换,这可能具有挑战性。 Keras 深度学习库提供了 TimeseriesGenerator,可以将单变量和多变量时间序列数据自动转换为样本,随时可以训练深度学习模型。
在本教程中,您将了解如何使用 Keras TimeseriesGenerator 准备时间序列数据,以便使用深度学习方法进行建模。
完成本教程后,您将了解:
* 如何定义 TimeseriesGenerator 生成器并将其用于适合深度学习模型。
* 如何为单变量时间序列准备发电机并适合 MLP 和 LSTM 模型。
* 如何为多变量时间序列准备生成器并适合 LSTM 模型。
让我们开始吧。
![How to Use the TimeseriesGenerator for Time Series Forecasting in Keras](https://img.kancloud.cn/21/a9/21a9500afb8a3b9e5da32093699eecb3_640x424.jpg)
如何在 Keras 中使用 TimeseriesGenerator 进行时间序列预测
照片由 [Chris Fithall](https://www.flickr.com/photos/chrisfithall/13933989150/) 拍摄,保留一些权利。
## 教程概述
本教程分为六个部分;他们是:
1. 监督学习的时间序列问题
2. 如何使用 TimeseriesGenerator
3. 单变量时间序列示例
4. 多变量时间序列示例
5. 多变量输入和相关系列示例
6. 多步预测示例
**注**:本教程假设您使用的是 **Keras v2.2.4** 或更高版本。
## 监督学习的时间序列问题
时间序列数据需要准备才能用于训练监督学习模型,例如深度学习模型。
例如,单变量时间序列表示为观察向量:
```py
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
监督学习算法要求数据作为样本集合提供,其中每个样本具有输入分量( _X_ )和输出分量( _y_ )。
```py
X, y
example input, example output
example input, example output
example input, example output
...
```
该模型将学习如何将输入映射到所提供示例的输出。
```py
y = f(X)
```
必须将时间序列转换为具有输入和输出组件的样本。该变换既可以告知模型将要学习什么,也可以在进行预测时告知将来如何使用该模型,例如:做出预测需要什么( _X_ )和做出预测( _y_ )。
对于对一步预测感兴趣的单变量时间序列,在先前时间步骤的观察,即所谓的滞后观察,被用作输入,输出是在当前时间步骤的观察。
例如,上述 10 步单变量系列可以表示为监督学习问题,其中输入的三个时间步长和输出的一个步骤如下:
```py
X, y
[1, 2, 3], [4]
[2, 3, 4], [5]
[3, 4, 5], [6]
...
```
您可以编写代码来自行执行此转换;例如,看帖子:
* [如何将时间序列转换为 Python 中的监督学习问题](https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/)
或者,当您对使用 Keras 训练神经网络模型感兴趣时,可以使用 TimeseriesGenerator 类。
## 如何使用 TimeseriesGenerator
Keras 提供 [TimeseriesGenerator](https://keras.io/preprocessing/sequence/) ,可用于将单变量或多变量时间序列数据集自动转换为监督学习问题。
使用 TimeseriesGenerator 有两个部分:定义它并使用它来训练模型。
### 定义 TimeseriesGenerator
您可以创建类的实例并指定时间序列问题的输入和输出方面,它将提供[序列类](https://keras.io/utils/#sequence)的实例,然后可以使用它来迭代输入和输出系列。
在大多数时间序列预测问题中,输入和输出系列将是同一系列。
例如:
```py
# load data
inputs = ...
outputs = ...
# define generator
generator = TimeseriesGenerator(inputs, outputs, ...)
# iterator generator
for i in range(len(generator)):
...
```
从技术上讲,该类不是一个生成器,因为它不是 [Python 生成器](https://wiki.python.org/moin/Generators),你不能在它上面使用 _next()_ 函数。
除了指定时间序列问题的输入和输出方面外,还应该配置一些其他参数;例如:
* **长度**:在每个样本的输入部分中使用的滞后观察的数量(例如 3)。
* **batch_size** :每次迭代时返回的样本数(例如 32)。
您必须根据设计的问题框架定义长度参数。这是用作输入的所需滞后观察数。
您还必须在训练期间将批量大小定义为模型的批量大小。如果数据集中的样本数小于批量大小,则可以通过计算其长度,将生成器和模型中的批量大小设置为生成器中的样本总数;例如:
```py
print(len(generator))
```
还有其他参数,例如定义数据的开始和结束偏移,采样率,步幅等。您不太可能使用这些功能,但您可以查看[完整 API](https://keras.io/preprocessing/sequence/) 以获取更多详细信息。
默认情况下,样本不会被洗牌。这对于像 LSTM 这样的一些循环神经网络很有用,这些神经网络在一批中的样本之间保持状态。
它可以使其他神经网络(例如 CNN 和 MLP)在训练时对样本进行混洗。可以通过将' _shuffle_ '参数设置为 True 来启用随机播放。这将具有为每个批次返回的洗样样本的效果。
在撰写本文时,TimeseriesGenerator 仅限于一步输出。不支持多步时间序列预测。
### 使用 TimeseriesGenerator 训练模型
一旦定义了 TimeseriesGenerator 实例,它就可以用于训练神经网络模型。
可以使用 TimeseriesGenerator 作为数据生成器来训练模型。这可以通过使用 _fit_generator()_ 函数拟合定义的模型来实现。
此函数将生成器作为参数。它还需要 _steps_per_epoch_ 参数来定义每个时期中使用的样本数。可以将此值设置为 TimeseriesGenerator 实例的长度,以使用生成器中的所有样本。
例如:
```py
# define generator
generator = TimeseriesGenerator(...)
# define model
model = ...
# fit model
model.fit_generator(generator, steps_per_epoch=len(generator), ...)
```
类似地,生成器可用于通过调用 _evaluate_generator()_ 函数来评估拟合模型,并使用拟合模型使用 _predict_generator()_ 函数对新数据进行预测。
与数据生成器匹配的模型不必使用 evaluate 和 predict 函数的生成器版本。只有在您希望数据生成器为模型准备数据时,才能使用它们。
## 单变量时间序列示例
我们可以使用一个小的设计单变量时间序列数据集的工作示例使 TimeseriesGenerator 具体化。
首先,让我们定义我们的数据集。
```py
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
```
我们将选择框架问题,其中最后两个滞后观察将用于预测序列中的下一个值。例如:
```py
X, y
[1, 2] 3
```
现在,我们将使用批量大小为 1,以便我们可以探索生成器中的数据。
```py
# define generator
n_input = 2
generator = TimeseriesGenerator(series, series, length=n_input, batch_size=1)
```
接下来,我们可以看到数据生成器将为此时间序列准备多少样本。
```py
# number of samples
print('Samples: %d' % len(generator))
```
最后,我们可以打印每个样本的输入和输出组件,以确认数据是按照我们的预期准备的。
```py
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
下面列出了完整的示例。
```py
# univariate one step problem
from numpy import array
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# define generator
n_input = 2
generator = TimeseriesGenerator(series, series, length=n_input, batch_size=1)
# number of samples
print('Samples: %d' % len(generator))
# print each sample
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
首先运行该示例打印生成器中的样本总数,即 8。
然后我们可以看到每个输入数组的形状为[1,2],每个输出的形状为[1,]。
观察结果按照我们的预期进行准备,其中两个滞后观察结果将用作输入,序列中的后续值作为输出。
```py
Samples: 8
[[1\. 2.]] => [3.]
[[2\. 3.]] => [4.]
[[3\. 4.]] => [5.]
[[4\. 5.]] => [6.]
[[5\. 6.]] => [7.]
[[6\. 7.]] => [8.]
[[7\. 8.]] => [9.]
[[8\. 9.]] => [10.]
```
现在我们可以在这个数据上拟合模型,并学习将输入序列映射到输出序列。
我们将从一个简单的多层感知器或 MLP 模型开始。
将定义发生器,以便在给定少量样品的情况下,将在每批中使用所有样品。
```py
# define generator
n_input = 2
generator = TimeseriesGenerator(series, series, length=n_input, batch_size=8)
```
我们可以定义一个简单的模型,其中一个隐藏层有 50 个节点,一个输出层将进行预测。
```py
# define model
model = Sequential()
model.add(Dense(100, activation='relu', input_dim=n_input))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
```
然后我们可以使用 _fit_generator()_ 函数将模型与生成器拟合。我们在生成器中只有一批数据,因此我们将 _steps_per_epoch_ 设置为 1.该模型适用于 200 个时期。
```py
# fit model
model.fit_generator(generator, steps_per_epoch=1, epochs=200, verbose=0)
```
一旦适合,我们将进行样本预测。
给定输入[9,10],我们将进行预测并期望模型预测[11]或接近它。该模型没有调整;这只是如何使用发电机的一个例子。
```py
# make a one step prediction out of sample
x_input = array([9, 10]).reshape((1, n_input))
yhat = model.predict(x_input, verbose=0)
```
下面列出了完整的示例。
```py
# univariate one step problem with mlp
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# define generator
n_input = 2
generator = TimeseriesGenerator(series, series, length=n_input, batch_size=8)
# define model
model = Sequential()
model.add(Dense(100, activation='relu', input_dim=n_input))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit_generator(generator, steps_per_epoch=1, epochs=200, verbose=0)
# make a one step prediction out of sample
x_input = array([9, 10]).reshape((1, n_input))
yhat = model.predict(x_input, verbose=0)
print(yhat)
```
运行该示例准备生成器,拟合模型,并进行样本预测,正确预测接近 11 的值。
```py
[[11.510406]]
```
我们还可以使用生成器来适应循环神经网络,例如长短期内存网络或 LSTM。
LSTM 期望数据输入具有[_ 样本,时间步长,特征 _]的形状,而到目前为止描述的生成器提供滞后观察作为特征或形状[_ 样本,特征 _]。
我们可以在从[10,]到[10,1]准备发电机之前重新设计单变量时间序列 10 个时间步长和 1 个特征;例如:
```py
# reshape to [10, 1]
n_features = 1
series = series.reshape((len(series), n_features))
```
然后,TimeseriesGenerator 将系列分为样品,其形状为[ _batch,n_input,1_ ]或[8,2,1],用于生成器中的所有八个样品,两个滞后观察用作时间步长。
下面列出了完整的示例。
```py
# univariate one step problem with lstm
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# reshape to [10, 1]
n_features = 1
series = series.reshape((len(series), n_features))
# define generator
n_input = 2
generator = TimeseriesGenerator(series, series, length=n_input, batch_size=8)
# define model
model = Sequential()
model.add(LSTM(100, activation='relu', input_shape=(n_input, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit_generator(generator, steps_per_epoch=1, epochs=500, verbose=0)
# make a one step prediction out of sample
x_input = array([9, 10]).reshape((1, n_input, n_features))
yhat = model.predict(x_input, verbose=0)
print(yhat)
```
再次,运行该示例准备数据,拟合模型,并预测序列中的下一个样本外值。
```py
[[11.092189]]
```
## 多变量时间序列示例
TimeseriesGenerator 还支持多变量时间序列问题。
这些是您有多个并行系列的问题,每个系列中的观察步骤同时进行。
我们可以用一个例子来证明这一点。
首先,我们可以设计两个并行系列的数据集。
```py
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
```
具有多变量时间序列格式的标准结构使得每个时间序列是单独的列,行是每个时间步的观察值。
我们定义的系列是向量,但我们可以将它们转换为列。我们可以将每个系列重塑为具有 10 个时间步长和 1 个特征的形状[10,1]的数组。
```py
# reshape series
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
```
我们现在可以通过调用 _hstack()_ NumPy 函数将列水平堆叠到数据集中。
```py
# horizontally stack columns
dataset = hstack((in_seq1, in_seq2))
```
我们现在可以直接将此数据集提供给 TimeseriesGenerator。我们将使用每个系列的前两个观测值作为输入,并将每个序列的下一个观测值作为输出。
```py
# define generator
n_input = 2
generator = TimeseriesGenerator(dataset, dataset, length=n_input, batch_size=1)
```
然后,对于 1 个样本,2 个时间步长和 2 个特征或平行序列,每个样本将是[1,2,2]的三维阵列。对于 1 个样本和 2 个特征,输出将是[1,2]的二维系列。第一个样本将是:
```py
X, y
[[10, 15], [20, 25]] [[30, 35]]
```
下面列出了完整的示例。
```py
# multivariate one step problem
from numpy import array
from numpy import hstack
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
# reshape series
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
# horizontally stack columns
dataset = hstack((in_seq1, in_seq2))
print(dataset)
# define generator
n_input = 2
generator = TimeseriesGenerator(dataset, dataset, length=n_input, batch_size=1)
# number of samples
print('Samples: %d' % len(generator))
# print each sample
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
运行该示例将首先打印准备好的数据集,然后打印数据集中的总样本数。
接下来,打印每个样品的输入和输出部分,确认我们的预期结构。
```py
[[ 10 15]
[ 20 25]
[ 30 35]
[ 40 45]
[ 50 55]
[ 60 65]
[ 70 75]
[ 80 85]
[ 90 95]
[100 105]]
Samples: 8
[[[10\. 15.]
[20\. 25.]]] => [[30\. 35.]]
[[[20\. 25.]
[30\. 35.]]] => [[40\. 45.]]
[[[30\. 35.]
[40\. 45.]]] => [[50\. 55.]]
[[[40\. 45.]
[50\. 55.]]] => [[60\. 65.]]
[[[50\. 55.]
[60\. 65.]]] => [[70\. 75.]]
[[[60\. 65.]
[70\. 75.]]] => [[80\. 85.]]
[[[70\. 75.]
[80\. 85.]]] => [[90\. 95.]]
[[[80\. 85.]
[90\. 95.]]] => [[100\. 105.]]
```
样本的三维结构意味着生成器不能直接用于像 MLP 这样的简单模型。
这可以通过首先将时间序列数据集展平为一维向量,然后将其提供给 TimeseriesGenerator 并将长度设置为用作输入的步数乘以系列中的列数( _n_steps 来实现。 * n_features_ )。
这种方法的局限性在于生成器只允许您预测一个变量。几乎可以肯定,编写自己的函数来为 MLP 准备多变量时间序列比使用 TimeseriesGenerator 更好。
样品的三维结构可以由 CNN 和 LSTM 模型直接使用。下面列出了使用 TimeseriesGenerator 进行多变量时间序列预测的完整示例。
```py
# multivariate one step problem with lstm
from numpy import array
from numpy import hstack
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
# reshape series
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
# horizontally stack columns
dataset = hstack((in_seq1, in_seq2))
# define generator
n_features = dataset.shape[1]
n_input = 2
generator = TimeseriesGenerator(dataset, dataset, length=n_input, batch_size=8)
# define model
model = Sequential()
model.add(LSTM(100, activation='relu', input_shape=(n_input, n_features)))
model.add(Dense(2))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit_generator(generator, steps_per_epoch=1, epochs=500, verbose=0)
# make a one step prediction out of sample
x_input = array([[90, 95], [100, 105]]).reshape((1, n_input, n_features))
yhat = model.predict(x_input, verbose=0)
print(yhat)
```
运行该示例准备数据,拟合模型,并预测每个输入时间序列中的下一个值,我们期望[110,115]。
```py
[[111.03207 116.58153]]
```
## 多变量输入和相关系列示例
存在多变量时间序列问题,其中存在一个或多个输入序列和要预测的单独输出序列,其取决于输入序列。
为了使这个具体,我们可以设计一个带有两个输入时间序列和一个输出系列的例子,它是输入系列的总和。
```py
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
out_seq = array([25, 45, 65, 85, 105, 125, 145, 165, 185, 205])
```
其中输出序列中的值是输入时间序列中同一时间步长的值的总和。
```py
10 + 15 = 25
```
这与先前的示例不同,在给定输入的情况下,我们希望预测下一时间步的目标时间序列中的值,而不是与输入相同的时间步长。
例如,我们想要样本:
```py
X, y
[10, 15], 25
[20, 25], 45
[30, 35], 65
...
```
我们不希望样品如下:
```py
X, y
[10, 15], 45
[20, 25], 65
[30, 35], 85
...
```
尽管如此,TimeseriesGenerator 类假定我们正在预测下一个时间步骤,并将提供数据,如上面的第二种情况。
例如:
```py
# multivariate one step problem
from numpy import array
from numpy import hstack
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
out_seq = array([25, 45, 65, 85, 105, 125, 145, 165, 185, 205])
# reshape series
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
out_seq = out_seq.reshape((len(out_seq), 1))
# horizontally stack columns
dataset = hstack((in_seq1, in_seq2))
# define generator
n_input = 1
generator = TimeseriesGenerator(dataset, out_seq, length=n_input, batch_size=1)
# print each sample
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
运行该示例打印样本的输入和输出部分,其具有下一时间步的输出值而不是当前时间步,因为我们可能期望这种类型的问题。
```py
[[[10\. 15.]]] => [[45.]]
[[[20\. 25.]]] => [[65.]]
[[[30\. 35.]]] => [[85.]]
[[[40\. 45.]]] => [[105.]]
[[[50\. 55.]]] => [[125.]]
[[[60\. 65.]]] => [[145.]]
[[[70\. 75.]]] => [[165.]]
[[[80\. 85.]]] => [[185.]]
[[[90\. 95.]]] => [[205.]]
```
因此,我们可以修改目标序列( _out_seq_ )并在开头插入一个额外的值,以便将所有观察值向下推一步。
这种人为的转变将允许优选的问题框架。
```py
# shift the target sample by one step
out_seq = insert(out_seq, 0, 0)
```
下面提供了这种转变的完整示例。
```py
# multivariate one step problem
from numpy import array
from numpy import hstack
from numpy import insert
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
in_seq1 = array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
in_seq2 = array([15, 25, 35, 45, 55, 65, 75, 85, 95, 105])
out_seq = array([25, 45, 65, 85, 105, 125, 145, 165, 185, 205])
# reshape series
in_seq1 = in_seq1.reshape((len(in_seq1), 1))
in_seq2 = in_seq2.reshape((len(in_seq2), 1))
out_seq = out_seq.reshape((len(out_seq), 1))
# horizontally stack columns
dataset = hstack((in_seq1, in_seq2))
# shift the target sample by one step
out_seq = insert(out_seq, 0, 0)
# define generator
n_input = 1
generator = TimeseriesGenerator(dataset, out_seq, length=n_input, batch_size=1)
# print each sample
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
运行该示例显示问题的首选框架。
无论输入样本的长度如何,此方法都将起作用。
```py
[[[10\. 15.]]] => [25.]
[[[20\. 25.]]] => [45.]
[[[30\. 35.]]] => [65.]
[[[40\. 45.]]] => [85.]
[[[50\. 55.]]] => [105.]
[[[60\. 65.]]] => [125.]
[[[70\. 75.]]] => [145.]
[[[80\. 85.]]] => [165.]
[[[90\. 95.]]] => [185.]
```
## 多步预测示例
与许多其他类型的经典和机器学习模型相比,神经网络模型的一个好处是它们可以进行多步预测。
也就是说,模型可以学习将一个或多个特征的输入模式映射到多于一个特征的输出模式。这可用于时间序列预测,以直接预测多个未来时间步骤。
这可以通过直接从模型输出向量,通过将所需数量的输出指定为输出层中的节点数来实现,或者可以通过诸如编码器 - 解码器模型的专用序列预测模型来实现。
TimeseriesGenerator 的一个限制是它不直接支持多步输出。具体而言,它不会创建目标序列中可能需要的多个步骤。
然而,如果您准备目标序列有多个步骤,它将尊重并使用它们作为每个样本的输出部分。这意味着你有责任为每个时间步骤准备预期的输出。
我们可以通过一个简单的单变量时间序列来证明这一点,在输出序列中有两个时间步长。
您可以看到目标序列中的行数必须与输入序列中的行数相同。在这种情况下,我们必须知道输入序列中的值之外的值,或者将输入序列修剪为目标序列的长度。
```py
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
target = array([[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11]])
```
下面列出了完整的示例。
```py
# univariate multi-step problem
from numpy import array
from keras.preprocessing.sequence import TimeseriesGenerator
# define dataset
series = array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
target = array([[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11]])
# define generator
n_input = 2
generator = TimeseriesGenerator(series, target, length=n_input, batch_size=1)
# print each sample
for i in range(len(generator)):
x, y = generator[i]
print('%s => %s' % (x, y))
```
运行该示例打印样本的输入和输出部分,显示两个滞后观察值作为输入,两个步骤作为多步骤预测问题的输出。
```py
[[1\. 2.]] => [[3\. 4.]]
[[2\. 3.]] => [[4\. 5.]]
[[3\. 4.]] => [[5\. 6.]]
[[4\. 5.]] => [[6\. 7.]]
[[5\. 6.]] => [[7\. 8.]]
[[6\. 7.]] => [[8\. 9.]]
[[7\. 8.]] => [[ 9\. 10.]]
[[8\. 9.]] => [[10\. 11.]]
```
## 进一步阅读
如果您希望深入了解,本节将提供有关该主题的更多资源。
* [如何将时间序列转换为 Python 中的监督学习问题](https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/)
* [TimeseriesGenerator Keras API](https://keras.io/preprocessing/sequence/)
* [序列 Keras API](https://keras.io/utils/#sequence)
* [顺序模型 Keras API](https://keras.io/models/sequential/)
* [Python Generator](https://wiki.python.org/moin/Generators)
## 摘要
在本教程中,您了解了如何使用 Keras TimeseriesGenerator 准备时间序列数据,以便使用深度学习方法进行建模。
具体来说,你学到了:
* 如何定义 TimeseriesGenerator 生成器并将其用于适合深度学习模型。
* 如何为单变量时间序列准备发电机并适合 MLP 和 LSTM 模型。
* 如何为多变量时间序列准备生成器并适合 LSTM 模型。
你有任何问题吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程