# 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
> 原文: [https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/](https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/)
强大且流行的递归神经网络是长期短期模型网络或 LSTM。
它被广泛使用,因为该体系结构克服了困扰所有递归神经网络的消失和暴露梯度问题,允许创建非常大且非常深的网络。
与其他递归神经网络一样,LSTM 网络维持状态,并且在 Keras 框架中如何实现这一点的具体细节可能会令人困惑。
在这篇文章中,您将通过 Keras 深度学习库确切了解 LSTM 网络中的状态。
阅读这篇文章后你会知道:
* 如何为序列预测问题开发一个朴素的 LSTM 网络。
* 如何通过 LSTM 网络批量管理状态和功能。
* 如何在 LSTM 网络中手动管理状态以进行状态预测。
让我们开始吧。
* **2017 年 3 月更新**:更新了 Keras 2.0.2,TensorFlow 1.0.1 和 Theano 0.9.0 的示例。
* **更新 Aug / 2018** :更新了 Python 3 的示例,更新了有状态示例以获得 100%的准确性。
* **更新 Mar / 2019** :修正了有状态示例中的拼写错误。
![Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras](https://img.kancloud.cn/3f/26/3f264d3dbab085994649c64d42d97d89_640x425.png)
使用 Keras 了解 Python 中的有状态 LSTM 回归神经网络
[Martin Abegglen](https://www.flickr.com/photos/twicepix/7923674788/) 的照片,保留一些权利。
## 问题描述:学习字母表
在本教程中,我们将开发和对比许多不同的 LSTM 递归神经网络模型。
这些比较的背景将是学习字母表的简单序列预测问题。也就是说,给定一个字母表的字母,预测字母表的下一个字母。
这是一个简单的序列预测问题,一旦理解就可以推广到其他序列预测问题,如时间序列预测和序列分类。
让我们用一些 python 代码来准备问题,我们可以从示例到示例重用这些代码。
首先,让我们导入我们计划在本教程中使用的所有类和函数。
```py
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
```
接下来,我们可以为随机数生成器播种,以确保每次执行代码时结果都相同。
```py
# fix random seed for reproducibility
numpy.random.seed(7)
```
我们现在可以定义我们的数据集,即字母表。为了便于阅读,我们用大写字母定义字母表。
神经网络模型编号,因此我们需要将字母表的字母映射为整数值。我们可以通过创建字符索引的字典(map)来轻松完成此操作。我们还可以创建反向查找,以便将预测转换回字符以便以后使用。
```py
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
```
现在我们需要创建输入和输出对来训练我们的神经网络。我们可以通过定义输入序列长度,然后从输入字母序列中读取序列来完成此操作。
例如,我们使用输入长度 1.从原始输入数据的开头开始,我们可以读出第一个字母“A”和下一个字母作为预测“B”。我们沿着一个角色移动并重复直到我们达到“Z”的预测。
```py
# prepare the dataset of input to output pairs encoded as integers
seq_length = 1
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
```
我们还打印出输入对以进行健全性检查。
将代码运行到此点将产生以下输出,总结长度为 1 的输入序列和单个输出字符。
```py
A -> B
B -> C
C -> D
D -> E
E -> F
F -> G
G -> H
H -> I
I -> J
J -> K
K -> L
L -> M
M -> N
N -> O
O -> P
P -> Q
Q -> R
R -> S
S -> T
T -> U
U -> V
V -> W
W -> X
X -> Y
Y -> Z
```
我们需要将 NumPy 阵列重新整形为 LSTM 网络所期望的格式,即[_ 样本,时间步长,特征 _]。
```py
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
```
一旦重新整形,我们就可以将输入整数归一化到 0 到 1 的范围,即 LSTM 网络使用的 S 形激活函数的范围。
```py
# normalize
X = X / float(len(alphabet))
```
最后,我们可以将此问题视为序列分类任务,其中 26 个字母中的每一个代表不同的类。因此,我们可以使用 Keras 内置函数 **to_categorical()**将输出(y)转换为一个热编码。
```py
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
```
我们现在准备适应不同的 LSTM 模型。
## 用于学习 One-Char 到 One-Char 映射的 Naive LSTM
让我们从设计一个简单的 LSTM 开始,学习如何在给定一个字符的上下文的情况下预测字母表中的下一个字符。
我们将问题框架化为单字母输入到单字母输出对的随机集合。正如我们将看到的那样,这是 LSTM 学习问题的难点框架。
让我们定义一个具有 32 个单元的 LSTM 网络和一个具有 softmax 激活功能的输出层,用于进行预测。因为这是一个多类分类问题,我们可以使用日志丢失函数(在 Keras 中称为“ **categorical_crossentropy** ”),并使用 ADAM 优化函数优化网络。
该模型适用于 500 个时期,批量大小为 1。
```py
# create and fit the model
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)
```
在我们拟合模型之后,我们可以评估和总结整个训练数据集的表现。
```py
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
```
然后,我们可以通过网络重新运行训练数据并生成预测,将输入和输出对转换回原始字符格式,以便直观地了解网络如何了解问题。
```py
# demonstrate some model predictions
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
下面提供了整个代码清单,以确保完整性。
```py
# Naive LSTM to learn one-char to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 1
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
运行此示例将生成以下输出。
```py
Model Accuracy: 84.00%
['A'] -> B
['B'] -> C
['C'] -> D
['D'] -> E
['E'] -> F
['F'] -> G
['G'] -> H
['H'] -> I
['I'] -> J
['J'] -> K
['K'] -> L
['L'] -> M
['M'] -> N
['N'] -> O
['O'] -> P
['P'] -> Q
['Q'] -> R
['R'] -> S
['S'] -> T
['T'] -> U
['U'] -> W
['V'] -> Y
['W'] -> Z
['X'] -> Z
['Y'] -> Z
```
我们可以看到这个问题对于网络来说确实很难学习。
原因是,糟糕的 LSTM 单位没有任何上下文可以使用。每个输入 - 输出模式以随机顺序显示给网络,并且在每个模式(每个批次包含一个模式的每个批次)之后重置网络状态。
这是滥用 LSTM 网络架构,将其视为标准的多层 Perceptron。
接下来,让我们尝试不同的问题框架,以便为网络提供更多的顺序来学习。
## Naive LSTM 用于三字符特征窗口到单字符映射
为多层 Perceptrons 添加更多上下文数据的流行方法是使用 window 方法。
这是序列中的先前步骤作为网络的附加输入功能提供的地方。我们可以尝试相同的技巧,为 LSTM 网络提供更多上下文。
在这里,我们将序列长度从 1 增加到 3,例如:
```py
# prepare the dataset of input to output pairs encoded as integers
seq_length = 3
```
这创建了以下训练模式:
```py
ABC -> D
BCD -> E
CDE -> F
```
然后,序列中的每个元素作为新的输入特征提供给网络。这需要修改数据准备步骤中输入序列的重新形成方式:
```py
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), 1, seq_length))
```
在演示模型的预测时,还需要修改样本模式的重新整形方式。
```py
x = numpy.reshape(pattern, (1, 1, len(pattern)))
```
下面提供了整个代码清单,以确保完整性。
```py
# Naive LSTM to learn three-char window to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), 1, seq_length))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for pattern in dataX:
x = numpy.reshape(pattern, (1, 1, len(pattern)))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
运行此示例提供以下输出。
```py
Model Accuracy: 86.96%
['A', 'B', 'C'] -> D
['B', 'C', 'D'] -> E
['C', 'D', 'E'] -> F
['D', 'E', 'F'] -> G
['E', 'F', 'G'] -> H
['F', 'G', 'H'] -> I
['G', 'H', 'I'] -> J
['H', 'I', 'J'] -> K
['I', 'J', 'K'] -> L
['J', 'K', 'L'] -> M
['K', 'L', 'M'] -> N
['L', 'M', 'N'] -> O
['M', 'N', 'O'] -> P
['N', 'O', 'P'] -> Q
['O', 'P', 'Q'] -> R
['P', 'Q', 'R'] -> S
['Q', 'R', 'S'] -> T
['R', 'S', 'T'] -> U
['S', 'T', 'U'] -> V
['T', 'U', 'V'] -> Y
['U', 'V', 'W'] -> Z
['V', 'W', 'X'] -> Z
['W', 'X', 'Y'] -> Z
```
我们可以看到表现上的小幅提升可能是也可能不是真实的。这是一个简单的问题,即使使用窗口方法,我们仍然无法用 LSTM 学习。
同样,这是对问题的不良框架的 LSTM 网络的滥用。实际上,字母序列是一个特征的时间步长,而不是单独特征的一个时间步长。我们已经为网络提供了更多的上下文,但没有像预期的那样更多的序列。
在下一节中,我们将以时间步长的形式为网络提供更多上下文。
## 用于单字符映射的三字符时间步长窗口的朴素 LSTM
在 Keras 中,LSTM 的预期用途是以时间步长的形式提供上下文,而不是像其他网络类型那样提供窗口化功能。
我们可以采用我们的第一个例子,只需将序列长度从 1 更改为 3。
```py
seq_length = 3
```
同样,这会创建输入 - 输出对,如下所示:
```py
ABC -> D
BCD -> E
CDE -> F
DEF -> G
```
不同之处在于输入数据的重新整形将序列作为一个特征的时间步长序列,而不是多个特征的单个时间步长。
```py
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
```
这是为 Keras 中的 LSTM 提供序列上下文的正确用途。完整性代码示例如下所示。
```py
# Naive LSTM to learn three-char time steps to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 3
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
运行此示例提供以下输出。
```py
Model Accuracy: 100.00%
['A', 'B', 'C'] -> D
['B', 'C', 'D'] -> E
['C', 'D', 'E'] -> F
['D', 'E', 'F'] -> G
['E', 'F', 'G'] -> H
['F', 'G', 'H'] -> I
['G', 'H', 'I'] -> J
['H', 'I', 'J'] -> K
['I', 'J', 'K'] -> L
['J', 'K', 'L'] -> M
['K', 'L', 'M'] -> N
['L', 'M', 'N'] -> O
['M', 'N', 'O'] -> P
['N', 'O', 'P'] -> Q
['O', 'P', 'Q'] -> R
['P', 'Q', 'R'] -> S
['Q', 'R', 'S'] -> T
['R', 'S', 'T'] -> U
['S', 'T', 'U'] -> V
['T', 'U', 'V'] -> W
['U', 'V', 'W'] -> X
['V', 'W', 'X'] -> Y
['W', 'X', 'Y'] -> Z
```
我们可以看到模型完美地学习了问题,如模型评估和示例预测所证明的那样。
但它已经学到了一个更简单的问题。具体来说,它学会了从字母表中的三个字母序列预测下一个字母。它可以显示字母表中任意三个字母的随机序列,并预测下一个字母。
它实际上不能枚举字母表。我希望更大的多层感知网络可以使用窗口方法学习相同的映射。
LSTM 网络是有状态的。他们应该能够学习整个字母顺序,但默认情况下,Keras 实现会在每个训练批次之后重置网络状态。
## 批量生产中的 LSTM 状态
LSTM 的 Keras 实现在每批之后重置网络状态。
这表明,如果我们的批量大小足以容纳所有输入模式,并且如果所有输入模式都是按顺序排序的,那么 LSTM 可以使用批量中序列的上下文来更好地学习序列。
我们可以通过修改学习一对一映射的第一个示例并将批量大小从 1 增加到训练数据集的大小来轻松演示这一点。
此外,Keras 在每个训练时期之前对训练数据集进行混洗。为确保训练数据模式保持连续,我们可以禁用此改组。
```py
model.fit(X, y, epochs=5000, batch_size=len(dataX), verbose=2, shuffle=False)
```
网络将使用批内序列学习字符映射,但在进行预测时,网络将无法使用此上下文。我们可以评估网络随机和按顺序进行预测的能力。
完整性代码示例如下所示。
```py
# Naive LSTM to learn one-char to one-char mapping with all data in each batch
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
from keras.preprocessing.sequence import pad_sequences
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 1
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
# convert list of lists to array and pad sequences if needed
X = pad_sequences(dataX, maxlen=seq_length, dtype='float32')
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (X.shape[0], seq_length, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
model = Sequential()
model.add(LSTM(16, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=5000, batch_size=len(dataX), verbose=2, shuffle=False)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for pattern in dataX:
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
# demonstrate predicting random patterns
print("Test a Random Pattern:")
for i in range(0,20):
pattern_index = numpy.random.randint(len(dataX))
pattern = dataX[pattern_index]
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
运行该示例提供以下输出。
```py
Model Accuracy: 100.00%
['A'] -> B
['B'] -> C
['C'] -> D
['D'] -> E
['E'] -> F
['F'] -> G
['G'] -> H
['H'] -> I
['I'] -> J
['J'] -> K
['K'] -> L
['L'] -> M
['M'] -> N
['N'] -> O
['O'] -> P
['P'] -> Q
['Q'] -> R
['R'] -> S
['S'] -> T
['T'] -> U
['U'] -> V
['V'] -> W
['W'] -> X
['X'] -> Y
['Y'] -> Z
Test a Random Pattern:
['T'] -> U
['V'] -> W
['M'] -> N
['Q'] -> R
['D'] -> E
['V'] -> W
['T'] -> U
['U'] -> V
['J'] -> K
['F'] -> G
['N'] -> O
['B'] -> C
['M'] -> N
['F'] -> G
['F'] -> G
['P'] -> Q
['A'] -> B
['K'] -> L
['W'] -> X
['E'] -> F
```
正如我们所料,网络能够使用序列内上下文来学习字母表,从而实现训练数据的 100%准确性。
重要的是,网络可以对随机选择的字符中的下一个字母进行准确的预测。非常令人印象深刻。
## 用于单字符到单字符映射的有状态 LSTM
我们已经看到,我们可以将原始数据分解为固定大小的序列,并且这种表示可以由 LSTM 学习,但仅用于学习 3 个字符到 1 个字符的随机映射。
我们还看到,我们可以通过批量大小来为网络提供更多序列,但仅限于训练期间。
理想情况下,我们希望将网络暴露给整个序列,让它学习相互依赖关系,而不是在问题框架中明确定义这些依赖关系。
我们可以在 Keras 中通过使 LSTM 层有状态并在时期结束时手动重置网络状态来执行此操作,这也是训练序列的结束。
这确实是如何使用 LSTM 网络的。
我们首先需要将 LSTM 层定义为有状态。这样,我们必须明确指定批量大小作为输入形状的维度。这也意味着,当我们评估网络或进行预测时,我们还必须指定并遵守相同的批量大小。现在这不是一个问题,因为我们使用批量大小为 1.当批量大小不是一个时,这可能会在进行预测时带来困难,因为需要批量和按顺序进行预测。
```py
batch_size = 1
model.add(LSTM(50, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
```
训练有状态 LSTM 的一个重要区别是我们一次手动训练一个时期并在每个时期后重置状态。我们可以在 for 循环中执行此操作。同样,我们不会改变输入,保留输入训练数据的创建顺序。
```py
for i in range(300):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
model.reset_states()
```
如上所述,我们在评估整个训练数据集的网络表现时指定批量大小。
```py
# summarize performance of the model
scores = model.evaluate(X, y, batch_size=batch_size, verbose=0)
model.reset_states()
print("Model Accuracy: %.2f%%" % (scores[1]*100))
```
最后,我们可以证明网络确实学会了整个字母表。我们可以用第一个字母“A”播种它,请求预测,将预测反馈作为输入,并一直重复该过程到“Z”。
```py
# demonstrate some model predictions
seed = [char_to_int[alphabet[0]]]
for i in range(0, len(alphabet)-1):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
```
我们还可以看到网络是否可以从任意字母开始进行预测。
```py
# demonstrate a random starting point
letter = "K"
seed = [char_to_int[letter]]
print("New start: ", letter)
for i in range(0, 5):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
```
下面提供了整个代码清单,以确保完整性。
```py
# Stateful LSTM to learn one-char to one-char mapping
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
seq_length = 1
dataX = []
dataY = []
for i in range(0, len(alphabet) - seq_length, 1):
seq_in = alphabet[i:i + seq_length]
seq_out = alphabet[i + seq_length]
dataX.append([char_to_int[char] for char in seq_in])
dataY.append(char_to_int[seq_out])
print(seq_in, '->', seq_out)
# reshape X to be [samples, time steps, features]
X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
batch_size = 1
model = Sequential()
model.add(LSTM(50, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
for i in range(300):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
model.reset_states()
# summarize performance of the model
scores = model.evaluate(X, y, batch_size=batch_size, verbose=0)
model.reset_states()
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
seed = [char_to_int[alphabet[0]]]
for i in range(0, len(alphabet)-1):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
# demonstrate a random starting point
letter = "K"
seed = [char_to_int[letter]]
print("New start: ", letter)
for i in range(0, 5):
x = numpy.reshape(seed, (1, len(seed), 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
print(int_to_char[seed[0]], "->", int_to_char[index])
seed = [index]
model.reset_states()
```
运行该示例提供以下输出。
```py
Model Accuracy: 100.00%
A -> B
B -> C
C -> D
D -> E
E -> F
F -> G
G -> H
H -> I
I -> J
J -> K
K -> L
L -> M
M -> N
N -> O
O -> P
P -> Q
Q -> R
R -> S
S -> T
T -> U
U -> V
V -> W
W -> X
X -> Y
Y -> Z
New start: K
K -> B
B -> C
C -> D
D -> E
E -> F
```
我们可以看到网络完全记住了整个字母表。它使用了样本本身的上下文,并学习了预测序列中下一个字符所需的依赖性。
我们还可以看到,如果我们用第一个字母为网络播种,那么它可以正确地敲击字母表的其余部分。
我们还可以看到,它只是从冷启动中学习了完整的字母序列。当被要求预测来自“K”的下一个字母时,它预测“B”并且重新回到整个字母表的反刍。
为了真实地预测“K”,需要将网络的状态反复加热,将字母从“A”加到“J”。这告诉我们,通过准备以下训练数据,我们可以通过“无状态”LSTM 实现相同的效果:
```py
---a -> b
--ab -> c
-abc -> d
abcd -> e
```
输入序列固定为 25(a-to-y 预测 z)并且模式以零填充为前缀。
最后,这提出了使用可变长度输入序列训练 LSTM 网络以预测下一个字符的问题。
## 具有可变长度输入到单字符输出的 LSTM
在上一节中,我们发现 Keras“有状态”LSTM 实际上只是重放第一个 n 序列的捷径,但并没有真正帮助我们学习字母表的通用模型。
在本节中,我们将探索“无状态”LSTM 的变体,它可以学习字母表的随机子序列,并努力构建一个可以给出任意字母或字母子序列的模型,并预测字母表中的下一个字母。
首先,我们正在改变问题的框架。为简化起见,我们将定义最大输入序列长度并将其设置为小值,如 5,以加快训练速度。这定义了为训练绘制的字母表子序列的最大长度。在扩展中,如果我们允许循环回到序列的开头,这可以设置为完整字母表(26)或更长。
我们还需要定义要创建的随机序列的数量,在本例中为 1000.这也可能更多或更少。我希望实际上需要更少的模式。
```py
# prepare the dataset of input to output pairs encoded as integers
num_inputs = 1000
max_len = 5
dataX = []
dataY = []
for i in range(num_inputs):
start = numpy.random.randint(len(alphabet)-2)
end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1))
sequence_in = alphabet[start:end+1]
sequence_out = alphabet[end + 1]
dataX.append([char_to_int[char] for char in sequence_in])
dataY.append(char_to_int[sequence_out])
print(sequence_in, '->', sequence_out)
```
在更广泛的上下文中运行此代码将创建如下所示的输入模式:
```py
PQRST -> U
W -> X
O -> P
OPQ -> R
IJKLM -> N
QRSTU -> V
ABCD -> E
X -> Y
GHIJ -> K
```
输入序列的长度在 1 和 **max_len** 之间变化,因此需要零填充。这里,我们使用左侧(前缀)填充和 **pad_sequences()**函数中内置的 Keras。
```py
X = pad_sequences(dataX, maxlen=max_len, dtype='float32')
```
在随机选择的输入模式上评估训练的模型。这可能很容易成为新的随机生成的字符序列。我也相信这也可以是一个带有“A”的线性序列,输出 fes 作为单个字符输入。
完整性代码清单如下所示。
```py
# LSTM with Variable Length Input Sequences to One Character Output
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
from keras.preprocessing.sequence import pad_sequences
from theano.tensor.shared_randomstreams import RandomStreams
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
num_inputs = 1000
max_len = 5
dataX = []
dataY = []
for i in range(num_inputs):
start = numpy.random.randint(len(alphabet)-2)
end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1))
sequence_in = alphabet[start:end+1]
sequence_out = alphabet[end + 1]
dataX.append([char_to_int[char] for char in sequence_in])
dataY.append(char_to_int[sequence_out])
print(sequence_in, '->', sequence_out)
# convert list of lists to array and pad sequences if needed
X = pad_sequences(dataX, maxlen=max_len, dtype='float32')
# reshape X to be [samples, time steps, features]
X = numpy.reshape(X, (X.shape[0], max_len, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
batch_size = 1
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], 1)))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=batch_size, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for i in range(20):
pattern_index = numpy.random.randint(len(dataX))
pattern = dataX[pattern_index]
x = pad_sequences([pattern], maxlen=max_len, dtype='float32')
x = numpy.reshape(x, (1, max_len, 1))
x = x / float(len(alphabet))
prediction = model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = int_to_char[index]
seq_in = [int_to_char[value] for value in pattern]
print(seq_in, "->", result)
```
运行此代码将生成以下输出:
```py
Model Accuracy: 98.90%
['Q', 'R'] -> S
['W', 'X'] -> Y
['W', 'X'] -> Y
['C', 'D'] -> E
['E'] -> F
['S', 'T', 'U'] -> V
['G', 'H', 'I', 'J', 'K'] -> L
['O', 'P', 'Q', 'R', 'S'] -> T
['C', 'D'] -> E
['O'] -> P
['N', 'O', 'P'] -> Q
['D', 'E', 'F', 'G', 'H'] -> I
['X'] -> Y
['K'] -> L
['M'] -> N
['R'] -> T
['K'] -> L
['E', 'F', 'G'] -> H
['Q'] -> R
['Q', 'R', 'S'] -> T
```
我们可以看到,尽管模型没有从随机生成的子序列中完美地学习字母表,但它确实做得很好。该模型未经过调整,可能需要更多训练或更大的网络,或两者兼而有之(为读者练习)。
这是“_ 所有顺序输入示例中每个批次 _”字母模型的一个很好的自然扩展,它可以处理即席查询,但这次任意序列长度(最大长度) 。
## 摘要
在这篇文章中,您发现了 Keras 中的 LSTM 循环神经网络以及它们如何管理状态。
具体来说,你学到了:
* 如何为一个字符到一个字符的预测开发一个朴素的 LSTM 网络。
* 如何配置一个朴素的 LSTM 来学习样本中跨时间步的序列。
* 如何通过手动管理状态来配置 LSTM 以跨样本学习序列。
您对管理 LSTM 州或此帖有任何疑问吗?
在评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程