# 如何网格搜索深度学习模型进行时间序列预测
> 原文: [https://machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series-forecasting/](https://machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series-forecasting/)
网格搜索通常不是我们可以使用深度学习方法执行的操作。
这是因为深度学习方法通常需要大量数据和大型模型,因此需要花费数小时,数天或数周才能训练的模型。
在数据集较小的情况下,例如单变量时间序列,可以使用网格搜索来调整深度学习模型的超参数。
在本教程中,您将了解如何为深度学习模型开发网格搜索超参数框架。
完成本教程后,您将了解:
* 如何开发用于调整模型超参数的通用网格搜索框架。
* 如何在航空公司乘客单变量时间序列预测问题上对多层感知器模型进行网格搜索超参数。
* 如何使框架适应卷积和长期短期记忆神经网络的网格搜索超参数。
让我们开始吧。
![How to Grid Search Deep Learning Models for Time Series Forecasting](https://img.kancloud.cn/65/b3/65b3c77963fb96d9cc5fa79ec67325dc_640x360.jpg)
如何网格搜索时间序列预测的深度学习模型
照片由 [Hannes Flo](https://www.flickr.com/photos/hannesflo/40192605640/) ,保留一些权利。
## 教程概述
本教程分为五个部分;他们是:
1. 时间序列问题
2. 网格搜索框架
3. 网格搜索多层感知器
4. 网格搜索卷积神经网络
5. 网格搜索长短期记忆网络
## 时间序列问题
'_ 月度航空公司乘客 _'数据集总结了 1949 年至 1960 年期间航空公司每月数千人的国际旅客总数。
直接从这里下载数据集:
* [monthly-airline-passengers.csv](https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv)
在当前工作目录中使用文件名“ _monthly-airline-passengers.csv_ ”保存文件。
我们可以使用函数 _read_csv()_ 将此数据集作为 Pandas 系列加载。
```py
# load
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
```
加载后,我们可以总结数据集的形状,以确定观察的数量。
```py
# summarize shape
print(series.shape)
```
然后我们可以创建该系列的线图,以了解该系列的结构。
```py
# plot
pyplot.plot(series)
pyplot.show()
```
我们可以将所有这些结合在一起;下面列出了完整的示例。
```py
# load and plot dataset
from pandas import read_csv
from matplotlib import pyplot
# load
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
# summarize shape
print(series.shape)
# plot
pyplot.plot(series)
pyplot.show()
```
首先运行该示例将打印数据集的形状。
```py
(144, 1)
```
该数据集是每月一次,有 12 年或 144 次观测。在我们的测试中,我们将使用去年或 12 个观测值作为测试集。
创建线图。数据集具有明显的趋势和季节性成分。季节性成分的期限为 12 个月。
![Line Plot of Monthly International Airline Passengers](https://img.kancloud.cn/e9/7f/e97f0c216f9a1f72ab7ed7e9f6b5d36b_1280x960.jpg)
每月国际航空公司乘客的线路情节
在本教程中,我们将介绍用于网格搜索的工具,但我们不会针对此问题优化模型超参数。相反,我们将演示如何通常网格搜索深度学习模型超参数,并找到与朴素模型相比具有一定技巧的模型。
从之前的实验中,一个朴素的模型可以通过持续 12 个月前的值(相对指数-12)来实现 50.70 的均方根误差或 RMSE(记住单位是数千名乘客)。
这个朴素模型的表现提供了一个被认为适合这个问题的模型的约束。任何在过去 12 个月内达到低于 50.70 的预测表现的模型都具有技巧。
应该注意的是,调谐的 ETS 模型可以实现 17.09 的 RMSE,并且调谐的 SARIMA 可以实现 13.89 的 RMSE。这些为这个问题提供了一个调整良好的深度学习模型的预期的下限。
现在我们已经定义了模型技能的问题和期望,我们可以看看定义网格搜索测试工具。
## 网格搜索框架
在本节中,我们将开发一个网格搜索测试工具,可用于评估不同神经网络模型的一系列超参数,例如 MLP,CNN 和 LSTM。
本节分为以下几部分:
1. 训练 - 测试分裂
2. 系列作为监督学习
3. 前瞻性验证
4. 重复评估
5. 总结表现
6. 工作示例
### 训练 - 测试分裂
第一步是将加载的系列分成训练和测试集。
我们将使用前 11 年(132 个观测值)进行训练,最后 12 个用于测试集。
下面的 _train_test_split()_ 函数将拆分系列,将原始观察值和在测试集中使用的观察数作为参数。
```py
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
```
### 系列作为监督学习
接下来,我们需要能够将单变量观测系列框架化为监督学习问题,以便我们可以训练神经网络模型。
系列的监督学习框架意味着数据需要分成模型从中学习和概括的多个示例。
每个样本必须同时具有输入组件和输出组件。
输入组件将是一些先前的观察,例如三年或 36 个时间步骤。
输出组件将是下个月的总销售额,因为我们有兴趣开发一个模型来进行一步预测。
我们可以使用 pandas DataFrame 上的 [shift()函数](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.shift.html)来实现它。它允许我们向下移动一列(向前移动)或向后移动(向后移动)。我们可以将该系列作为一列数据,然后创建列的多个副本,向前或向后移动,以便使用我们需要的输入和输出元素创建样本。
当一个系列向下移动时,会引入 NaN 值,因为我们没有超出系列开头的值。
例如,系列定义为列:
```py
(t)
1
2
3
4
```
此列可以预先移位并作为列插入:
```py
(t-1), (t)
Nan, 1
1, 2
2, 3
3, 4
4 NaN
```
我们可以看到,在第二行,值 1 作为输入提供,作为前一时间步的观察,2 是系列中可以预测的下一个值,或者当 1 是预测模型时要学习的值作为输入呈现。
可以删除具有 NaN 值的行。
下面的 _series_to_supervised()_ 函数实现了这种行为,允许您指定输入中使用的滞后观察数和每个样本的输出中使用的数。它还将删除具有 NaN 值的行,因为它们不能用于训练或测试模型。
```py
# transform list into supervised learning format
def series_to_supervised(data, n_in=1, n_out=1):
df = DataFrame(data)
cols = list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
# put it all together
agg = concat(cols, axis=1)
# drop rows with NaN values
agg.dropna(inplace=True)
return agg.values
```
### 前瞻性验证
可以使用前向验证在测试集上评估时间序列预测模型。
前瞻性验证是一种方法,其中模型一次一个地对测试数据集中的每个观察进行预测。在对测试数据集中的时间步长进行每个预测之后,将预测的真实观察结果添加到测试数据集并使其可用于模型。
在进行后续预测之前,可以使用观察结果更简单的模型。考虑到更高的计算成本,更复杂的模型,例如神经网络,不会被改装。
然而,时间步骤的真实观察可以用作输入的一部分,用于在下一个时间步骤上进行预测。
首先,数据集分为训练集和测试集。我们将调用 _train_test_split()_ 函数来执行此拆分并传入预先指定数量的观察值以用作测试数据。
对于给定配置,模型将适合训练数据集一次。
我们将定义一个通用的 _model_fit()_ 函数来执行此操作,可以为我们稍后可能感兴趣的给定类型的神经网络填充该操作。该函数获取训练数据集和模型配置,并返回准备好进行预测的拟合模型。
```py
# fit a model
def model_fit(train, config):
return None
```
枚举测试数据集的每个时间步。使用拟合模型进行预测。
同样,我们将定义一个名为 _model_predict()_ 的通用函数,它采用拟合模型,历史和模型配置,并进行单个一步预测。
```py
# forecast with a pre-fit model
def model_predict(model, history, config):
return 0.0
```
将预测添加到预测列表中,并将来自测试集的真实观察结果添加到用训练数据集中的所有观察结果播种的观察列表中。此列表在前向验证的每个步骤中构建,允许模型使用最新历史记录进行一步预测。
然后可以将所有预测与测试集中的真实值进行比较,并计算误差测量值。
我们将计算预测和真实值之间的均方根误差或 RMSE。
RMSE 计算为预测值与实际值之间的平方差的平均值的平方根。 _measure_rmse()_ 使用 [mean_squared_error()scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html) 函数在计算平方根之前首先计算均方误差或 MSE。
```py
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
```
下面列出了将所有这些联系在一起的完整 _walk_forward_validation()_ 函数。
它采用数据集,用作测试集的观察数量以及模型的配置,并返回测试集上模型表现的 RMSE。
```py
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# fit model
model = model_fit(train, cfg)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = model_predict(model, history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
print(' > %.3f' % error)
return error
```
### 重复评估
神经网络模型是随机的。
这意味着,在给定相同的模型配置和相同的训练数据集的情况下,每次训练模型时将产生不同的内部权重集,这反过来将具有不同的表现。
这是一个好处,允许模型自适应并找到复杂问题的高表现配置。
在评估模型的表现和选择用于进行预测的最终模型时,这也是一个问题。
为了解决模型评估问题,我们将通过[前进验证](https://machinelearningmastery.com/backtest-machine-learning-models-time-series-forecasting/)多次评估模型配置,并将错误报告为每次评估的平均误差。
对于大型神经网络而言,这并不总是可行的,并且可能仅适用于能够在几分钟或几小时内完成的小型网络。
下面的 _repeat_evaluate()_ 函数实现了这一点,并允许将重复次数指定为默认为 10 的可选参数,并返回所有重复的平均 RMSE 分数。
```py
# score a model, return None on failure
def repeat_evaluate(data, config, n_test, n_repeats=10):
# convert config to a key
key = str(config)
# fit and evaluate the model n times
scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]
# summarize score
result = mean(scores)
print('> Model[%s] %.3f' % (key, result))
return (key, result)
```
### 网格搜索
我们现在拥有框架的所有部分。
剩下的就是驱动搜索的功能。我们可以定义 _grid_search()_ 函数,该函数获取数据集,要搜索的配置列表以及用作测试集的观察数量并执行搜索。
一旦为每个配置计算平均分数,配置列表将按升序排序,以便首先列出最佳分数。
完整的功能如下所列。
```py
# grid search configs
def grid_search(data, cfg_list, n_test):
# evaluate configs
scores = scores = [score_model(data, n_test, cfg) for cfg in cfg_list]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
```
### 工作示例
现在我们已经定义了测试工具的元素,我们可以将它们绑定在一起并定义一个简单的持久性模型。
我们不需要拟合模型,因此 _model_fit()_ 函数将被实现为简单地返回 None。
```py
# fit a model
def model_fit(train, config):
return None
```
我们将使用配置来定义先前观察中的索引偏移列表,该列表相对于将被用作预测的预测时间。例如,12 将使用 12 个月前(-12)相对于预测时间的观察。
```py
# define config
cfg_list = [1, 6, 12, 24, 36]
```
可以实现 _model_predict()_ 函数以使用此配置将值保持在负相对偏移处。
```py
# forecast with a pre-fit model
def model_predict(model, history, offset):
history[-offset]
```
下面列出了使用简单持久性模型使用框架的完整示例。
```py
# grid search persistence models for airline passengers
from math import sqrt
from numpy import mean
from pandas import read_csv
from sklearn.metrics import mean_squared_error
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
# fit a model
def model_fit(train, config):
return None
# forecast with a pre-fit model
def model_predict(model, history, offset):
return history[-offset]
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# fit model
model = model_fit(train, cfg)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = model_predict(model, history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
print(' > %.3f' % error)
return error
# score a model, return None on failure
def repeat_evaluate(data, config, n_test, n_repeats=10):
# convert config to a key
key = str(config)
# fit and evaluate the model n times
scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]
# summarize score
result = mean(scores)
print('> Model[%s] %.3f' % (key, result))
return (key, result)
# grid search configs
def grid_search(data, cfg_list, n_test):
# evaluate configs
scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
# define dataset
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
data = series.values
# data split
n_test = 12
# model configs
cfg_list = [1, 6, 12, 24, 36]
# grid search
scores = grid_search(data, cfg_list, n_test)
print('done')
# list top 10 configs
for cfg, error in scores[:10]:
print(cfg, error)
```
运行该示例将打印在最近 12 个月的数据中使用前向验证评估的模型的 RMSE。
每个模型配置被评估 10 次,但是,因为模型没有随机元素,所以每次得分都相同。
在运行结束时,将报告前三个执行模型配置的配置和 RMSE。
我们可以看到,正如我们可能预期的那样,持续一年前的值(相对偏移-12)导致持久性模型的最佳表现。
```py
...
> 110.274
> 110.274
> 110.274
> Model[36] 110.274
done
12 50.708316214732804
1 53.1515129919491
24 97.10990337413241
36 110.27352356753639
6 126.73495965991387
```
现在我们有一个强大的网格搜索模型超参数测试工具,我们可以用它来评估一套神经网络模型。
## 网格搜索多层感知器
我们可能希望调整 MLP 的许多方面。
我们将定义一个非常简单的模型,其中包含一个隐藏层,并定义五个超参数进行调整。他们是:
* **n_input** :用作模型输入的先前输入数(例如 12 个月)。
* **n_nodes** :隐藏层中使用的节点数(例如 50)。
* **n_epochs** :训练时期的数量(例如 1000)。
* **n_batch** :每个小批量中包含的样本数(例如 32)。
* **n_diff** :差分顺序(例如 0 或 12)。
现代神经网络可以通过很少的预处理来处理原始数据,例如缩放和差分。然而,当涉及时间序列数据时,有时差异系列可以使问题更容易建模。
回想一下,[差分](https://machinelearningmastery.com/remove-trends-seasonality-difference-transform-python/)是数据的变换,使得从当前观察中减去先前观察的值,去除趋势或季节性结构。
我们将为网格搜索测试工具添加差异支持,以防它为您的特定问题增加价值。它确实为内部航空公司乘客数据集增加了价值。
下面的 _ 差异()_ 函数将计算数据集的给定顺序的差异。
```py
# difference dataset
def difference(data, order):
return [data[i] - data[i - order] for i in range(order, len(data))]
```
差异将是可选的,其中 0 的顺序表示没有差异,而 1 阶或 12 阶将要求在拟合模型之前差异数据并且模型的预测需要在返回预测之前反转差分。
我们现在可以定义在测试工具中安装 MLP 模型所需的元素。
首先,我们必须解压缩超参数列表。
```py
# unpack config
n_input, n_nodes, n_epochs, n_batch, n_diff = config
```
接下来,我们必须准备数据,包括差分,将数据转换为监督格式,并分离出数据样本的输入和输出方面。
```py
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
```
我们现在可以使用提供的配置定义和拟合模型。
```py
# define model
model = Sequential()
model.add(Dense(n_nodes, activation='relu', input_dim=n_input))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
```
下面列出了 _model_fit()_ 函数的完整实现。
```py
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_nodes, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# define model
model = Sequential()
model.add(Dense(n_nodes, activation='relu', input_dim=n_input))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
```
五个选择的超参数绝不是要调整的模型的唯一或最佳超参数。您可以修改该功能以调整其他参数,例如更多隐藏层的添加和大小等等。
一旦模型适合,我们就可以使用它来进行预测。
如果数据差异,则必须反转差异以预测模型。这涉及将历史的相对偏移处的值添加回模型预测的值。
```py
# invert difference
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
...
# correct forecast if it was differenced
return correction + yhat[0]
```
这也意味着必须区分历史记录,以便用于进行预测的输入数据具有预期的形式。
```py
# calculate difference
history = difference(history, n_diff)
```
准备好之后,我们可以使用历史数据创建单个样本作为模型的输入,以进行一步预测。
一个样本的形状必须是[1,n_input],其中 _n_input_ 是要使用的滞后观察数的选定数量。
```py
# shape input for model
x_input = array(history[-n_input:]).reshape((1, n_input))
```
最后,可以进行预测。
```py
# make forecast
yhat = model.predict(x_input, verbose=0)
```
下面列出了 _model_predict()_ 函数的完整实现。
接下来,我们必须定义要为每个超参数尝试的值范围。
我们可以定义 _model_configs()_ 函数,该函数创建要尝试的不同参数组合的列表。
我们将定义一小部分配置作为示例,包括 12 个月的差异,我们预计这将是必需的。建议您尝试使用独立模型,查看学习曲线诊断图,并使用有关域的信息来设置超参数值到网格搜索的范围。
我们还鼓励您重复网格搜索以缩小显示更好表现的值范围。
下面列出了 _model_configs()_ 函数的实现。
```py
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_nodes = [50, 100]
n_epochs = [100]
n_batch = [1, 150]
n_diff = [0, 12]
# create configs
configs = list()
for i in n_input:
for j in n_nodes:
for k in n_epochs:
for l in n_batch:
for m in n_diff:
cfg = [i, j, k, l, m]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
```
我们现在拥有网格搜索 MLP 模型所需的所有部分,用于单变量时间序列预测问题。
下面列出了完整的示例。
```py
# grid search mlps for airline passengers
from math import sqrt
from numpy import array
from numpy import mean
from pandas import DataFrame
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
# transform list into supervised learning format
def series_to_supervised(data, n_in=1, n_out=1):
df = DataFrame(data)
cols = list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
# put it all together
agg = concat(cols, axis=1)
# drop rows with NaN values
agg.dropna(inplace=True)
return agg.values
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
# difference dataset
def difference(data, order):
return [data[i] - data[i - order] for i in range(order, len(data))]
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_nodes, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# define model
model = Sequential()
model.add(Dense(n_nodes, activation='relu', input_dim=n_input))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
# forecast with the fit model
def model_predict(model, history, config):
# unpack config
n_input, _, _, _, n_diff = config
# prepare data
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
history = difference(history, n_diff)
# shape input for model
x_input = array(history[-n_input:]).reshape((1, n_input))
# make forecast
yhat = model.predict(x_input, verbose=0)
# correct forecast if it was differenced
return correction + yhat[0]
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# fit model
model = model_fit(train, cfg)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = model_predict(model, history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
print(' > %.3f' % error)
return error
# score a model, return None on failure
def repeat_evaluate(data, config, n_test, n_repeats=10):
# convert config to a key
key = str(config)
# fit and evaluate the model n times
scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]
# summarize score
result = mean(scores)
print('> Model[%s] %.3f' % (key, result))
return (key, result)
# grid search configs
def grid_search(data, cfg_list, n_test):
# evaluate configs
scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_nodes = [50, 100]
n_epochs = [100]
n_batch = [1, 150]
n_diff = [0, 12]
# create configs
configs = list()
for i in n_input:
for j in n_nodes:
for k in n_epochs:
for l in n_batch:
for m in n_diff:
cfg = [i, j, k, l, m]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
# define dataset
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
data = series.values
# data split
n_test = 12
# model configs
cfg_list = model_configs()
# grid search
scores = grid_search(data, cfg_list, n_test)
print('done')
# list top 3 configs
for cfg, error in scores[:3]:
print(cfg, error)
```
运行该示例,我们可以看到框架总共要评估八种配置。
每个配置将被评估 10 次;这意味着将使用前向验证创建和评估 10 个模型,以在报告这 10 个分数的平均值并用于对配置进行评分之前计算 RMSE 分数。
然后对得分进行排序,最后报告具有最低 RMSE 的前 3 个配置。与报告 RMSE 为 50.70 的幼稚模型相比,发现了一种熟练的模型配置。
我们可以看到 18.98 的最佳 RMSE 是通过[12,100,100,1,12]的配置实现的,我们知道可以解释为:
* **n_input** :12
* **n_nodes** :100
* **n_epochs** :100
* **n_batch** :1
* **n_diff** :12
下面列出了网格搜索的截断示例输出。
鉴于算法的随机性,您的具体分数可能会有所不同。
```py
Total configs: 8
> 20.707
> 29.111
> 17.499
> 18.918
> 28.817
...
> 21.015
> 20.208
> 18.503
> Model[[12, 100, 100, 150, 12]] 19.674
done
[12, 100, 100, 1, 12] 18.982720013625606
[12, 50, 100, 150, 12] 19.33004059448595
[12, 100, 100, 1, 0] 19.5389405532858
```
## 网格搜索卷积神经网络
我们现在可以将框架调整为网格搜索 CNN 模型。
可以像使用 MLP 模型一样搜索大量相同的超参数集,除了隐藏层中的节点数可以由卷积层中的滤波器映射数和内核大小替换。
在 CNN 模型中选择的网格搜索超参数集如下:
* **n_input** :用作模型输入的先前输入数(例如 12 个月)。
* **n_filters** :卷积层中的滤波器映射的数量(例如 32)。
* **n_kernel** :卷积层中的内核大小(例如 3)。
* **n_epochs** :训练时期的数量(例如 1000)。
* **n_batch** :每个小批量中包含的样本数(例如 32)。
* **n_diff** :差分顺序(例如 0 或 12)。
您可能希望研究的一些额外的超参数是在池化层之前使用两个卷积层,重复卷积和池化层模式,使用丢失等等。
我们将定义一个非常简单的 CNN 模型,其中包含一个卷积层和一个最大池池。
```py
# define model
model = Sequential()
model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu', input_shape=(n_input, n_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
```
必须以与 MLP 相同的方式准备数据。
与期望输入数据具有[样本,特征]形状的 MLP 不同,1D CNN 模型期望数据具有[_ 样本,时间步长,特征 _]的形状,其中特征映射到通道上并且在此案例 1 是我们每个月测量的一个变量。
```py
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
```
下面列出了 _model_fit()_ 函数的完整实现。
```py
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_filters, n_kernel, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
# define model
model = Sequential()
model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu', input_shape=(n_input, n_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
```
使用拟合 CNN 模型进行预测非常类似于使用拟合 MLP 进行预测。
同样,唯一的区别是一个样本值的输入数据必须具有三维形状。
```py
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
```
下面列出了 _model_predict()_ 函数的完整实现。
```py
# forecast with the fit model
def model_predict(model, history, config):
# unpack config
n_input, _, _, _, _, n_diff = config
# prepare data
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
history = difference(history, n_diff)
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
# forecast
yhat = model.predict(x_input, verbose=0)
return correction + yhat[0]
```
最后,我们可以定义要评估的模型的配置列表。和以前一样,我们可以通过定义超参数值列表来尝试将它们组合成一个列表。我们将尝试少量配置以确保示例在合理的时间内执行。
完整的 _model_configs()_ 功能如下所示。
```py
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_filters = [64]
n_kernels = [3, 5]
n_epochs = [100]
n_batch = [1, 150]
n_diff = [0, 12]
# create configs
configs = list()
for a in n_input:
for b in n_filters:
for c in n_kernels:
for d in n_epochs:
for e in n_batch:
for f in n_diff:
cfg = [a,b,c,d,e,f]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
```
我们现在拥有网格搜索卷积神经网络的超参数所需的所有元素,用于单变量时间序列预测。
下面列出了完整的示例。
```py
# grid search cnn for airline passengers
from math import sqrt
from numpy import array
from numpy import mean
from pandas import DataFrame
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
# transform list into supervised learning format
def series_to_supervised(data, n_in=1, n_out=1):
df = DataFrame(data)
cols = list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
# put it all together
agg = concat(cols, axis=1)
# drop rows with NaN values
agg.dropna(inplace=True)
return agg.values
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
# difference dataset
def difference(data, order):
return [data[i] - data[i - order] for i in range(order, len(data))]
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_filters, n_kernel, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
# define model
model = Sequential()
model.add(Conv1D(filters=n_filters, kernel_size=n_kernel, activation='relu', input_shape=(n_input, n_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
# forecast with the fit model
def model_predict(model, history, config):
# unpack config
n_input, _, _, _, _, n_diff = config
# prepare data
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
history = difference(history, n_diff)
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
# forecast
yhat = model.predict(x_input, verbose=0)
return correction + yhat[0]
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# fit model
model = model_fit(train, cfg)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = model_predict(model, history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
print(' > %.3f' % error)
return error
# score a model, return None on failure
def repeat_evaluate(data, config, n_test, n_repeats=10):
# convert config to a key
key = str(config)
# fit and evaluate the model n times
scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]
# summarize score
result = mean(scores)
print('> Model[%s] %.3f' % (key, result))
return (key, result)
# grid search configs
def grid_search(data, cfg_list, n_test):
# evaluate configs
scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_filters = [64]
n_kernels = [3, 5]
n_epochs = [100]
n_batch = [1, 150]
n_diff = [0, 12]
# create configs
configs = list()
for a in n_input:
for b in n_filters:
for c in n_kernels:
for d in n_epochs:
for e in n_batch:
for f in n_diff:
cfg = [a,b,c,d,e,f]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
# define dataset
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
data = series.values
# data split
n_test = 12
# model configs
cfg_list = model_configs()
# grid search
scores = grid_search(data, cfg_list, n_test)
print('done')
# list top 10 configs
for cfg, error in scores[:3]:
print(cfg, error)
```
运行该示例,我们可以看到只评估了八种不同的配置。
我们可以看到[12,64,5,100,1,12]的配置实现了 18.89 的 RMSE,与实现 50.70 的朴素预测模型相比,这是巧妙的。
我们可以将此配置解压缩为:
* **n_input** :12
* **n_filters** :64
* **n_kernel** :5
* **n_epochs** :100
* **n_batch** :1
* **n_diff** :12
下面列出了网格搜索的截断示例输出。
鉴于算法的随机性,您的具体分数可能会有所不同。
```py
Total configs: 8
> 23.372
> 28.317
> 31.070
...
> 20.923
> 18.700
> 18.210
> Model[[12, 64, 5, 100, 150, 12]] 19.152
done
[12, 64, 5, 100, 1, 12] 18.89593462072732
[12, 64, 5, 100, 150, 12] 19.152486150334234
[12, 64, 3, 100, 150, 12] 19.44680151564605
```
## 网格搜索长短期记忆网络
我们现在可以采用网格搜索 LSTM 模型的超参数。
LSTM 模型的超参数将与 MLP 相同;他们是:
* **n_input** :用作模型输入的先前输入数(例如 12 个月)。
* **n_nodes** :隐藏层中使用的节点数(例如 50)。
* **n_epochs** :训练时期的数量(例如 1000)。
* **n_batch** :每个小批量中包含的样本数(例如 32)。
* **n_diff** :差分顺序(例如 0 或 12)。
我们将定义一个简单的 LSTM 模型,该模型具有单个隐藏的 LSTM 层和指定该层中单元数的节点数。
```py
# define model
model = Sequential()
model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))
model.add(Dense(n_nodes, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
```
探索调整其他配置(例如使用双向输入层,堆叠 LSTM 层,甚至是具有 CNN 或 ConvLSTM 输入模型的混合模型)可能会很有趣。
与 CNN 模型一样,LSTM 模型期望输入数据具有样本,时间步长和特征的三维形状。
```py
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
```
下面列出了 _model_fit()_ 函数的完整实现。
```py
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_nodes, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
# define model
model = Sequential()
model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))
model.add(Dense(n_nodes, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
```
与 CNN 一样,用于进行预测的单个输入样本也必须重新形成预期的三维结构。
```py
# reshape sample into [samples, timesteps, features]
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
```
完整的 _model_predict()_ 功能如下所示。
```py
# forecast with the fit model
def model_predict(model, history, config):
# unpack config
n_input, _, _, _, n_diff = config
# prepare data
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
history = difference(history, n_diff)
# reshape sample into [samples, timesteps, features]
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
# forecast
yhat = model.predict(x_input, verbose=0)
return correction + yhat[0]
```
我们现在可以定义用于创建要评估的模型配置列表的函数。
训练的 LSTM 模型比 MLP 和 CNN 模型慢得多;因此,您可能希望评估每次运行的配置更少。
我们将定义一组非常简单的两种配置来探索:随机和批量梯度下降。
```py
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_nodes = [100]
n_epochs = [50]
n_batch = [1, 150]
n_diff = [12]
# create configs
configs = list()
for i in n_input:
for j in n_nodes:
for k in n_epochs:
for l in n_batch:
for m in n_diff:
cfg = [i, j, k, l, m]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
```
我们现在拥有了针对 LSTM 模型的网格搜索超参数所需的一切,用于单变量时间序列预测。
下面列出了完整的示例。
```py
# grid search lstm for airline passengers
from math import sqrt
from numpy import array
from numpy import mean
from pandas import DataFrame
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
# split a univariate dataset into train/test sets
def train_test_split(data, n_test):
return data[:-n_test], data[-n_test:]
# transform list into supervised learning format
def series_to_supervised(data, n_in=1, n_out=1):
df = DataFrame(data)
cols = list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):
cols.append(df.shift(i))
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-i))
# put it all together
agg = concat(cols, axis=1)
# drop rows with NaN values
agg.dropna(inplace=True)
return agg.values
# root mean squared error or rmse
def measure_rmse(actual, predicted):
return sqrt(mean_squared_error(actual, predicted))
# difference dataset
def difference(data, order):
return [data[i] - data[i - order] for i in range(order, len(data))]
# fit a model
def model_fit(train, config):
# unpack config
n_input, n_nodes, n_epochs, n_batch, n_diff = config
# prepare data
if n_diff > 0:
train = difference(train, n_diff)
# transform series into supervised format
data = series_to_supervised(train, n_in=n_input)
# separate inputs and outputs
train_x, train_y = data[:, :-1], data[:, -1]
# reshape input data into [samples, timesteps, features]
n_features = 1
train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], n_features))
# define model
model = Sequential()
model.add(LSTM(n_nodes, activation='relu', input_shape=(n_input, n_features)))
model.add(Dense(n_nodes, activation='relu'))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
# fit model
model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0)
return model
# forecast with the fit model
def model_predict(model, history, config):
# unpack config
n_input, _, _, _, n_diff = config
# prepare data
correction = 0.0
if n_diff > 0:
correction = history[-n_diff]
history = difference(history, n_diff)
# reshape sample into [samples, timesteps, features]
x_input = array(history[-n_input:]).reshape((1, n_input, 1))
# forecast
yhat = model.predict(x_input, verbose=0)
return correction + yhat[0]
# walk-forward validation for univariate data
def walk_forward_validation(data, n_test, cfg):
predictions = list()
# split dataset
train, test = train_test_split(data, n_test)
# fit model
model = model_fit(train, cfg)
# seed history with training dataset
history = [x for x in train]
# step over each time-step in the test set
for i in range(len(test)):
# fit model and make forecast for history
yhat = model_predict(model, history, cfg)
# store forecast in list of predictions
predictions.append(yhat)
# add actual observation to history for the next loop
history.append(test[i])
# estimate prediction error
error = measure_rmse(test, predictions)
print(' > %.3f' % error)
return error
# score a model, return None on failure
def repeat_evaluate(data, config, n_test, n_repeats=10):
# convert config to a key
key = str(config)
# fit and evaluate the model n times
scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)]
# summarize score
result = mean(scores)
print('> Model[%s] %.3f' % (key, result))
return (key, result)
# grid search configs
def grid_search(data, cfg_list, n_test):
# evaluate configs
scores = scores = [repeat_evaluate(data, cfg, n_test) for cfg in cfg_list]
# sort configs by error, asc
scores.sort(key=lambda tup: tup[1])
return scores
# create a list of configs to try
def model_configs():
# define scope of configs
n_input = [12]
n_nodes = [100]
n_epochs = [50]
n_batch = [1, 150]
n_diff = [12]
# create configs
configs = list()
for i in n_input:
for j in n_nodes:
for k in n_epochs:
for l in n_batch:
for m in n_diff:
cfg = [i, j, k, l, m]
configs.append(cfg)
print('Total configs: %d' % len(configs))
return configs
# define dataset
series = read_csv('monthly-airline-passengers.csv', header=0, index_col=0)
data = series.values
# data split
n_test = 12
# model configs
cfg_list = model_configs()
# grid search
scores = grid_search(data, cfg_list, n_test)
print('done')
# list top 10 configs
for cfg, error in scores[:3]:
print(cfg, error)
```
运行该示例,我们可以看到只评估了两个不同的配置。
我们可以看到[12,100,50,1,12]的配置实现了 21.24 的 RMSE,与实现 50.70 的朴素预测模型相比,这是巧妙的。
该模型需要更多的调整,并且可以使用混合配置做得更好,例如将 CNN 模型作为输入。
我们可以将此配置解压缩为:
* **n_input** :12
* **n_nodes** :100
* **n_epochs** :50
* **n_batch** :1
* **n_diff** :12
下面列出了网格搜索的截断示例输出。
鉴于算法的随机性,您的具体分数可能会有所不同。
```py
Total configs: 2
> 20.488
> 17.718
> 21.213
...
> 22.300
> 20.311
> 21.322
> Model[[12, 100, 50, 150, 12]] 21.260
done
[12, 100, 50, 1, 12] 21.243775750634093
[12, 100, 50, 150, 12] 21.259553398553606
```
## 扩展
本节列出了一些扩展您可能希望探索的教程的想法。
* **更多配置**。探索其中一个模型的大型配置套件,看看您是否能找到能够提高表现的配置。
* **数据缩放**。更新网格搜索框架以在拟合模型和反转变换以进行预测之前还支持数据的缩放(标准化和/或标准化)。
* **网络架构**。探索网格搜索给定模型的更大架构更改,例如添加更多隐藏层。
* **新数据集**。在新的单变量时间序列数据集中探索给定模型的网格搜索。
* **多变量**。更新网格搜索框架以支持小的多变量时间序列数据集,例如具有多个输入变量的数据集。
如果你探索任何这些扩展,我很想知道。
## 进一步阅读
如果您希望深入了解,本节将提供有关该主题的更多资源。
* [如何使用 Keras 网格搜索 Python 中的深度学习模型的超参数](https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/)
* [Keras 核心层 API](https://keras.io/layers/core/)
* [Keras 卷积层 API](https://keras.io/layers/convolutional/)
* [Keras Recurrent Layers API](https://keras.io/layers/recurrent/)
## 摘要
在本教程中,您了解了如何为深度学习模型开发网格搜索超参数框架。
具体来说,你学到了:
* 如何开发用于调整模型超参数的通用网格搜索框架。
* 如何在航空公司乘客单变量时间序列预测问题上对多层感知器模型进行网格搜索超参数。
* 如何使框架适应卷积和长期短期记忆神经网络的网格搜索超参数。
你有任何问题吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程