# 如何使用 LSTM 网络中的特征进行时间序列预测
> 原文: [https://machinelearningmastery.com/use-features-lstm-networks-time-series-forecasting/](https://machinelearningmastery.com/use-features-lstm-networks-time-series-forecasting/)
Keras 中的长短期记忆(LSTM)网络支持多种输入功能。
这就提出了一个问题,即单变量时间序列的滞后观测是否可以用作 LSTM 的特征,以及这是否会改善预测表现。
在本教程中,我们将研究使用滞后观察作为 Python 中 LSTM 模型的特征。
完成本教程后,您将了解:
* 如何开发测试工具以系统地评估 LSTM 功能以进行时间序列预测。
* 使用不同数量的滞后观测值作为 LSTM 模型的输入特征的影响。
* 对 LSTM 模型使用不同数量的滞后观察和匹配数量的神经元的影响。
让我们开始吧。
![How to Use Features in LSTM Networks for Time Series Forecasting](https://img.kancloud.cn/ac/c0/acc0dfa72cef3faae1a33fca94dde5c4_640x424.jpg)
如何使用 LSTM 网络中的功能进行时间序列预测
[Tom Hodgkinson](https://www.flickr.com/photos/hodgers/117655250/in/photostream/) 的照片,保留一些权利。
## 教程概述
本教程分为 4 个部分。他们是:
1. 洗发水销售数据集
2. 实验测试线束
3. 使用 Timesteps 的实验
4. 时间步和神经元的实验
### 环境
本教程假定您已安装 Python SciPy 环境。您可以在此示例中使用 Python 2 或 3。
本教程假设您安装了 TensorFlow 或 Theano 后端的 Keras v2.0 或更高版本。
本教程还假设您安装了 scikit-learn,Pandas,NumPy 和 Matplotlib。
如果您在设置 Python 环境时需要帮助,请参阅以下帖子:
* [如何使用 Anaconda 设置用于机器学习和深度学习的 Python 环境](http://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 洗发水销售数据集
该数据集描述了 3 年期间每月洗发水的销售数量。
单位是销售计数,有 36 个观察。原始数据集归功于 Makridakis,Wheelwright 和 Hyndman(1998)。
[您可以在此处下载并了解有关数据集的更多信息](https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period)。
下面的示例加载并创建已加载数据集的图。
```py
# load and plot dataset
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
# load dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# summarize first few rows
print(series.head())
# line plot
series.plot()
pyplot.show()
```
运行该示例将数据集作为 Pandas Series 加载并打印前 5 行。
```py
Month
1901-01-01 266.0
1901-02-01 145.9
1901-03-01 183.1
1901-04-01 119.3
1901-05-01 180.3
Name: Sales, dtype: float64
```
然后创建该系列的线图,显示明显的增加趋势。
![Line Plot of Shampoo Sales Dataset](https://img.kancloud.cn/11/f1/11f11d2a2ec40c7c0724e4e09f11a4ca_640x480.jpg)
洗发水销售数据集的线图
接下来,我们将了解实验中使用的 LSTM 配置和测试工具。
## 实验测试线束
本节介绍本教程中使用的测试工具。
### 数据拆分
我们将 Shampoo Sales 数据集分为两部分:训练和测试集。
前两年的数据将用于训练数据集,剩余的一年数据将用于测试集。
将使用训练数据集开发模型,并对测试数据集进行预测。
测试数据集的持久性预测(朴素预测)实现了每月洗发水销售 136.761 的错误。这在测试集上提供了较低的可接受表现限制。
### 模型评估
将使用滚动预测场景,也称为前进模型验证。
测试数据集的每个时间步骤将一次一个地走。将使用模型对时间步长进行预测,然后将获取测试集的实际预期值,并使其可用于下一时间步的预测模型。
这模仿了一个真实世界的场景,每个月都会有新的洗发水销售观察结果,并用于下个月的预测。
这将通过训练和测试数据集的结构进行模拟。
将收集关于测试数据集的所有预测,并计算错误分数以总结模型的技能。将使用均方根误差(RMSE),因为它会对大错误进行处罚,并产生与预测数据相同的分数,即每月洗发水销售额。
### 数据准备
在我们将 LSTM 模型拟合到数据集之前,我们必须转换数据。
在拟合模型和进行预测之前,对数据集执行以下三个数据变换。
1. **转换时间序列数据,使其静止**。具体而言,滞后= 1 差分以消除数据中的增加趋势。
2. **将时间序列转换为监督学习问题**。具体而言,将数据组织成输入和输出模式,其中前一时间步的观察被用作预测当前时间步的观察的输入
3. **将观察结果转换为具有特定比例**。具体而言,要将数据重新调整为-1 到 1 之间的值,以满足 LSTM 模型的默认双曲正切激活函数。
这些变换在预测时反转,在计算和误差分数之前将它们恢复到原始比例。
### LSTM 模型
我们将使用基础状态 LSTM 模型,其中 1 个神经元适合 500 个时期。
批量大小为 1 是必需的,因为我们将使用前向验证并对最后 12 个月的测试数据进行一步预测。
批量大小为 1 意味着该模型将使用在线训练(而不是批量训练或小批量训练)。因此,预计模型拟合将具有一些变化。
理想情况下,将使用更多的训练时期(例如 1000 或 1500),但这被截断为 500 以保持运行时间合理。
使用有效的 ADAM 优化算法和均方误差损失函数来拟合模型。
### 实验运行
每个实验场景将运行 10 次。
其原因在于,每次训练给定配置时,LSTM 网络的随机初始条件可能导致非常不同的结果。
让我们深入研究实验。
## 具有特征的实验
我们将进行 5 次实验;每个将使用不同数量的滞后观察作为 1 至 5 的特征。
使用有状态 LSTM 时,具有 1 输入要素的表示将是默认表示。设计使用 2 到 5 个功能。希望是滞后观测的附加背景可以改善预测模型的表现。
在训练模型之前,单变量时间序列被转换为监督学习问题。指定数量的特征定义用于预测下一次观察的输入变量( _X_ )的数量( _y_ )。因此,对于表示中使用的每个要素,必须从数据集的开头删除许多行。这是因为没有先前的观察结果可用作数据集中第一个值的特征。
下面提供了测试 1 输入功能的完整代码清单。
对于 5 个实验中的每一个, _run()_ 函数中的特征参数从 1 到 5 变化。此外,结果在实验结束时保存到文件中,并且还必须针对每个不同的实验运行更改该文件名,例如, _experiment_features_1.csv_ , _experiment_features_2.csv_ 等
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import matplotlib
import numpy
from numpy import concatenate
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# fit an LSTM network to training data
def fit_lstm(train, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
return model
# make a one-step forecast
def forecast_lstm(model, batch_size, X):
X = X.reshape(1, 1, len(X))
yhat = model.predict(X, batch_size=batch_size)
return yhat[0,0]
# run a repeated experiment
def experiment(repeats, series, features):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, features)
supervised_values = supervised.values[features:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12, :], supervised_values[-12:, :]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(repeats):
# fit the base model
lstm_model = fit_lstm(train_scaled, 1, 500, 1)
# forecast test dataset
predictions = list()
for i in range(len(test_scaled)):
# predict
X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
yhat = forecast_lstm(lstm_model, 1, X)
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# execute the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# experiment
repeats = 10
results = DataFrame()
# run experiment
features = 1
results['results'] = experiment(repeats, series, features)
# summarize results
print(results.describe())
# save results
results.to_csv('experiment_features_1.csv', index=False)
# entry point
run()
```
针对 5 种不同数量的特征运行 5 个不同的实验。
如果有足够的内存和 CPU 资源,可以并行运行它们。这些实验不需要 GPU 资源,运行应该在几分钟到几十分钟内完成。
运行实验后,您应该有 5 个包含结果的文件,如下所示:
* _experiment_features_1.csv_
* _experiment_features_2.csv_
* _experiment_features_3.csv_
* _experiment_features_4.csv_
* _experiment_features_5.csv_
我们可以编写一些代码来加载和汇总这些结果。
具体而言,查看每次运行的描述性统计数据并使用方框和胡须图比较每次运行的结果非常有用。
下面列出了总结结果的代码。
```py
from pandas import DataFrame
from pandas import read_csv
from matplotlib import pyplot
# load results into a dataframe
filenames = ['experiment_features_1.csv', 'experiment_features_2.csv',
'experiment_features_3.csv','experiment_features_4.csv','experiment_features_5.csv']
results = DataFrame()
for name in filenames:
results[name[11:-4]] = read_csv(name, header=0)
# describe all results
print(results.describe())
# box and whisker plot
results.boxplot()
pyplot.show()
```
首先运行代码会为每组结果打印描述性统计信息。
我们可以从单独的平均表现中看出,使用单个功能的默认值可以获得最佳表现。在查看中位数测试 RMSE(第 50 百分位数)时也会显示这一点。
```py
features_1 features_2 features_3 features_4 features_5
count 10.000000 10.000000 10.000000 10.000000 10.000000
mean 104.588249 126.597800 118.268251 107.694178 116.414887
std 10.205840 18.639757 14.359983 8.683271 18.806281
min 89.046814 93.857991 103.900339 93.702085 98.245871
25% 97.850827 120.296634 107.664087 102.992045 105.660897
50% 103.713285 133.582095 116.123790 106.116922 112.950460
75% 111.441655 134.362198 121.794533 111.498255 117.926664
max 122.341580 149.807155 152.412861 123.006088 164.598542
```
还创建了比较结果分布的盒子和胡须图。
该情节与描述性统计数据相同。随着功能数量的增加,测试 RMSE 似乎跃升了 2 个功能并且趋势向上。
![Box and Whisker Plot of Test RMSE vs The Number of Input Features](https://img.kancloud.cn/e3/60/e3602c7f5a48cfed98bd7baddcf048e9_640x480.jpg)
测试 RMSE 的盒子和晶须图与输入特征的数量
至少在使用数据集和 LSTM 配置的情况下,没有观察到随着特征的增加而减少的误差的期望。
这就提出了一个问题,即网络的容量是否是一个限制因素。我们将在下一节中看到这一点。
## 特征和神经元的实验
LSTM 网络中的神经元(也称为单元)的数量定义了其学习能力。
在先前的实验中,可能使用一个神经元限制了网络的学习能力,使得它不能有效地使用滞后观察作为特征。
我们可以重复上述实验,并随着特征的增加增加 LSTM 中神经元的数量,看看它是否会导致表现的提高。
这可以通过更改实验函数中的行来实现:
```py
lstm_model = fit_lstm(train_scaled, 1, 500, 1, features)
```
至
```py
lstm_model = fit_lstm(train_scaled, 1, 500, features, features)
```
此外,我们可以通过在文件名中添加“ __neurons_ ”后缀来保持写入文件的结果与第一个实验的结果分开,例如,更改:
```py
results.to_csv('experiment_features_1.csv', index=False)
```
至
```py
results.to_csv('experiment_features_1_neurons.csv', index=False)
```
用这些变化重复相同的 5 个实验。
运行这些实验后,您应该有 5 个结果文件。
* _experiment_features_1_neurons.csv_
* _experiment_features_2_neurons.csv_
* _experiment_features_3_neurons.csv_
* _experiment_features_4_neurons.csv_
* _experiment_features_5_neurons.csv_
与前一个实验一样,我们可以加载结果,计算描述性统计数据,并创建一个盒子和须状图。完整的代码清单如下。
```py
from pandas import DataFrame
from pandas import read_csv
from matplotlib import pyplot
# load results into a dataframe
filenames = ['experiment_features_1_neurons.csv', 'experiment_features_2_neurons.csv',
'experiment_features_3_neurons.csv','experiment_features_4_neurons.csv','experiment_features_5_neurons.csv']
results = DataFrame()
for name in filenames:
results[name[11:-12]] = read_csv(name, header=0)
# describe all results
print(results.describe())
# box and whisker plot
results.boxplot()
pyplot.show()
```
运行代码首先打印 5 个实验中的每一个的描述性统计数据。
结果用一个神经元 LSTM 对第一组实验说明了不同的故事。当神经元数量和特征数量设置为 1 时,平均测试 RMSE 显得最低,然后随着神经元和特征的增加,误差增加。
```py
features_1 features_2 features_3 features_4 features_5
count 10.000000 10.000000 10.000000 10.000000 10.000000
mean 106.219189 138.411111 127.687128 154.281694 175.951500
std 16.100488 29.700981 21.411766 30.526294 44.839217
min 91.073598 92.641030 103.503546 94.063639 117.017109
25% 97.263723 125.748973 108.972440 134.805621 142.146601
50% 99.036766 133.639168 128.627349 162.295657 182.406707
75% 110.625302 146.896608 134.012859 176.969980 197.913894
max 146.638148 206.760081 170.899267 188.911768 250.685187
```
创建框和胡须图以比较分布。
随着神经元数量和输入特征的增加,扩散和中位表现的趋势几乎表明测试 RMSE 呈线性增加。
线性趋势可能表明增加的网络容量没有足够的时间来拟合数据。也许还需要增加时代数量。
![Box and Whisker Plot of Test RMSE vs The Number of Neurons and Input Features](https://img.kancloud.cn/41/bc/41bc603cd4a3ef210e4b8a25f8f33d1e_640x480.jpg)
测试 RMSE 的盒子和晶须图与神经元和输入特征的数量
## 特征和神经元的实验更多时代
在本节中,我们重复上述实验,以增加具有特征数量的神经元数量,但将训练时期的数量从 500 增加到 1000。
这可以通过更改实验函数中的行来实现:
```py
lstm_model = fit_lstm(train_scaled, 1, 500, features, features)
```
至
```py
lstm_model = fit_lstm(train_scaled, 1, 1000, features, features)
```
此外,我们可以通过在文件名中添加“ _1000_ ”后缀来保持写入文件的结果与上一次实验的结果分开,例如,更改:
```py
results.to_csv('experiment_features_1_neurons.csv', index=False)
```
至
```py
results.to_csv('experiment_features_1_neurons1000.csv', index=False)
```
用这些变化重复相同的 5 个实验。
运行这些实验后,您应该有 5 个结果文件。
* _experiment_features_1_neurons1000.csv_
* _experiment_features_2_neurons1000.csv_
* _experiment_features_3_neurons1000.csv_
* _experiment_features_4_neurons1000.csv_
* _experiment_features_5_neurons1000.csv_
与前一个实验一样,我们可以加载结果,计算描述性统计数据,并创建一个盒子和须状图。完整的代码清单如下。
```py
from pandas import DataFrame
from pandas import read_csv
from matplotlib import pyplot
# load results into a dataframe
filenames = ['experiment_features_1_neurons1000.csv', 'experiment_features_2_neurons1000.csv',
'experiment_features_3_neurons1000.csv','experiment_features_4_neurons1000.csv','experiment_features_5_neurons1000.csv']
results = DataFrame()
for name in filenames:
results[name[11:-16]] = read_csv(name, header=0)
# describe all results
print(results.describe())
# box and whisker plot
results.boxplot()
pyplot.show()
```
运行代码首先打印 5 个实验中的每一个的描述性统计数据。
结果与前一个实验的故事非常相似,训练时期数量减少了一半。平均而言,具有 1 个输入特征和 1 个神经元的模型优于其他配置。
```py
features_1 features_2 features_3 features_4 features_5
count 10.000000 10.000000 10.000000 10.000000 10.000000
mean 109.262674 158.295172 120.340623 149.741882 201.992209
std 13.850525 32.288109 45.219564 53.121113 82.986691
min 95.927393 111.936394 83.983325 111.017837 78.040385
25% 98.754253 130.875314 95.198556 122.287208 148.840499
50% 103.990988 167.915523 110.256517 129.552084 188.498836
75% 116.055435 180.679252 122.158321 154.283676 234.519359
max 133.270446 204.260072 242.186747 288.907803 335.595974
```
还创建了一个盒子和胡须图来比较分布。在情节中,我们看到了与描述性统计中明确相同的趋势。
至少在这个问题和选择的 LSTM 配置中,我们没有看到增加输入功能数量的任何明显好处。
![Box and Whisker Plot of Test RMSE vs The Number of Neurons and Input Features and 1000 Epochs](https://img.kancloud.cn/3e/ec/3eec1236203db0dcceca9992b6986f5f_640x480.jpg)
测试 RMSE 的盒子和晶须图与神经元和输入特征的数量以及 1000 个时期
## 扩展
本节列出了您可能考虑探索的一些进一步调查的领域。
* **诊断运行图**。对于给定的实验,在多次运行的情况下查看训练和测试 RMSE 的图可能是有帮助的。这可能有助于梳理过度拟合或过度拟合是否正在发生,反过来又是解决它的方法。
* **增加重复次数**。使用 10 次重复导致相对少量的测试 RMSE 结果。将重复增加至 30 或 100(或甚至更高)可能导致更稳定的结果。
你有没有探索过这些扩展?
在下面的评论中分享您的发现;我很想听听你发现了什么。
## 摘要
在本教程中,您了解了如何使用滞后观察作为 LSTM 网络中的输入要素进行调查。
具体来说,你学到了:
* 如何开发一个强大的测试工具来尝试使用 LSTM 进行输入表示。
* 如何使用滞后观测作为 LSTM 时间序列预测的输入特征。
* 如何通过增加输入功能来增加网络的学习能力。
您发现“_ 使用滞后观察作为输入功能可以提高模型技能 _”并未降低所选问题和 LSTM 配置的测试 RMSE。
你有任何问题吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程