# 如何使用 LSTM 网络的 Dropout 进行时间序列预测
> 原文: [https://machinelearningmastery.com/use-dropout-lstm-networks-time-series-forecasting/](https://machinelearningmastery.com/use-dropout-lstm-networks-time-series-forecasting/)
长短期记忆(LSTM)模型是一种能够学习观察序列的循环神经网络。
这可能使它们成为一个非常适合时间序列预测的网络。
LSTM 的一个问题是他们可以轻松地过度训练训练数据,降低他们的预测技巧。
Dropout 是一种正规化方法,在训练网络时,LSTM 单元的输入和重复连接在概率上被排除在激活和权重更新之外。这具有减少过度拟合和改善模型表现的效果。
在本教程中,您将了解如何在 LSTM 网络和设计实验中使用 dropout 来测试其对时间序列预测的有效性。
完成本教程后,您将了解:
* 如何设计一个强大的测试工具来评估 LSTM 网络的时间序列预测。
* 如何使用 LSTM 使用输入权重丢失来设计,执行和解释结果。
* 如何设计,执行和解释使用 LSTM 重复丢失重量的结果。
让我们开始吧。
![How to Use Dropout with LSTM Networks for Time Series Forecasting](https://img.kancloud.cn/81/98/8198dd5359d0e2e98ee8ca9ab9d1cd79_640x480.jpg)
如何使用 LSTM 网络的 Dropout 进行时间序列预测
照片来自 Jonas Bengtsson,保留一些权利。
## 教程概述
本教程分为 5 个部分。他们是:
1. 洗发水销售数据集
2. 实验测试线束
3. 输入 dropout
4. 经常性 dropout
5. 审查结果
### 环境
本教程假定您已安装 Python SciPy 环境。您可以在此示例中使用 Python 2 或 3。
本教程假设您安装了 TensorFlow 或 Theano 后端的 Keras v2.0 或更高版本。
本教程还假设您安装了 scikit-learn,Pandas,NumPy 和 Matplotlib。
接下来,让我们看看标准时间序列预测问题,我们可以将其用作此实验的上下文。
如果您在设置 Python 环境时需要帮助,请参阅以下帖子:
* [如何使用 Anaconda 设置用于机器学习和深度学习的 Python 环境](http://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/)
## 洗发水销售数据集
该数据集描述了 3 年期间每月洗发水的销售数量。
单位是销售计数,有 36 个观察。原始数据集归功于 Makridakis,Wheelwright 和 Hyndman(1998)。
[您可以在此处下载并了解有关数据集的更多信息](https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period)。
下面的示例加载并创建已加载数据集的图。
```py
# load and plot dataset
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
# load dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# summarize first few rows
print(series.head())
# line plot
series.plot()
pyplot.show()
```
运行该示例将数据集作为 Pandas Series 加载并打印前 5 行。
```py
Month
1901-01-01 266.0
1901-02-01 145.9
1901-03-01 183.1
1901-04-01 119.3
1901-05-01 180.3
Name: Sales, dtype: float64
```
然后创建该系列的线图,显示明显的增加趋势。
![Line Plot of Shampoo Sales Dataset](https://img.kancloud.cn/11/f1/11f11d2a2ec40c7c0724e4e09f11a4ca_640x480.jpg)
洗发水销售数据集的线图
接下来,我们将看一下实验中使用的模型配置和测试工具。
## 实验测试线束
本节介绍本教程中使用的测试工具。
### 数据拆分
我们将 Shampoo Sales 数据集分为两部分:训练和测试集。
前两年的数据将用于训练数据集,剩余的一年数据将用于测试集。
将使用训练数据集开发模型,并对测试数据集进行预测。
测试数据集的持久性预测(朴素预测)实现了每月洗发水销售 136.761 的错误。这在测试集上提供了较低的可接受表现限制。
#### 模型评估
将使用滚动预测场景,也称为前进模型验证。
测试数据集的每个时间步骤将一次一个地走。将使用模型对时间步长进行预测,然后将获取测试集的实际预期值,并使其可用于下一时间步的预测模型。
这模仿了一个真实世界的场景,每个月都会有新的洗发水销售观察结果,并用于下个月的预测。
这将通过训练和测试数据集的结构进行模拟。
将收集关于测试数据集的所有预测,并计算错误分数以总结模型的技能。将使用均方根误差(RMSE),因为它会对大错误进行处罚,并产生与预测数据相同的分数,即每月洗发水销售额。
### 数据准备
在我们将模型拟合到数据集之前,我们必须转换数据。
在拟合模型和进行预测之前,对数据集执行以下三个数据变换。
1. **转换时间序列数据,使其静止**。具体而言,滞后= 1 差分以消除数据中的增加趋势。
2. **将时间序列转换为监督学习问题**。具体而言,将数据组织成输入和输出模式,其中前一时间步的观察被用作预测当前时间步的观察的输入
3. **将观察结果转换为具有特定比例**。具体而言,将数据重新调整为-1 到 1 之间的值。
这些变换在预测时反转,在计算和误差分数之前将它们恢复到原始比例。
### LSTM 模型
我们将使用基础状态 LSTM 模型,其中 1 个神经元适合 1000 个时期。
批量大小为 1 是必需的,因为我们将使用前向验证并对最后 12 个月的测试数据进行一步预测。
批量大小为 1 意味着该模型将使用在线训练(而不是批量训练或小批量训练)。因此,预计模型拟合将具有一些变化。
理想情况下,将使用更多的训练时期(例如 1500),但这被截断为 1000 以保持运行时间合理。
使用有效的 ADAM 优化算法和均方误差损失函数来拟合模型。
### 实验运行
每个实验场景将运行 30 次,并且测试集上的 RMSE 得分将从每次运行结束时记录。
让我们深入研究实验。
## 基线 LSTM 模型
让我们从基线 LSTM 模型开始。
此问题的基线 LSTM 模型具有以下配置:
* 滞后输入:1
* 时代:1000
* LSTM 隐藏层中的单位:3
* 批量大小:4
* 重复:3
完整的代码清单如下。
此代码清单将用作所有后续实验的基础,只有后续部分中提供的此代码清单的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
# run the experiment
results = DataFrame()
results['results'] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_baseline.png')
# entry point
run()
```
运行实验将打印所有重复测试 RMSE 的摘要统计信息。
我们可以看到,平均而言,这种模型配置实现了约 92 个月洗发水销售的测试 RMSE,标准偏差为 5。
```py
results
count 30.000000
mean 92.842537
std 5.748456
min 81.205979
25% 89.514367
50% 92.030003
75% 96.926145
max 105.247117
```
还会根据测试 RMSE 结果的分布创建一个盒子和胡须图并保存到文件中。
该图清楚地描述了结果的传播,突出了中间 50%的值(框)和中位数(绿线)。
![Box and Whisker Plot of Baseline Performance on the Shampoo Sales Dataset](https://img.kancloud.cn/a5/00/a5002d0b5be4c6496150a59ce61af43f_640x480.jpg)
洗发水销售数据集中基线表现的盒子和晶须图
网络配置需要考虑的另一个角度是模型适应时的行为方式。
我们可以在每个训练时期之后评估训练和测试数据集上的模型,以了解配置是否过度拟合或不适合问题。
我们将在每组实验的最佳结果上使用此诊断方法。将运行总共 10 次重复的配置,并且在线图上绘制每个训练迭代之后的训练和测试 RMSE 得分。
在这种情况下,我们将在适用于 1000 个时期的 LSTM 上使用此诊断。
完整的诊断代码清单如下。
与前面的代码清单一样,下面的代码将用作本教程中所有诊断的基础,并且后续部分中仅提供对此列表的更改。
```py
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import matplotlib
# be able to save images on server
matplotlib.use('Agg')
from matplotlib import pyplot
import numpy
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, yhat):
new_row = [x for x in X] + [yhat]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# evaluate the model on a dataset, returns RMSE in transformed units
def evaluate(model, raw_data, scaled_dataset, scaler, offset, batch_size):
# separate
X, y = scaled_dataset[:,0:-1], scaled_dataset[:,-1]
# reshape
reshaped = X.reshape(len(X), 1, 1)
# forecast dataset
output = model.predict(reshaped, batch_size=batch_size)
# invert data transforms on forecast
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
# invert scaling
yhat = invert_scale(scaler, X[i], yhat)
# invert differencing
yhat = yhat + raw_data[i]
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_data[1:], predictions))
# reset model state
model.reset_states()
return rmse
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_baseline.png')
# entry point
run()
```
运行诊断程序打印最终训练并测试每次运行的 RMSE。更有趣的是创建的最终线图。
线图显示了每个训练时期之后的训练 RMSE(蓝色)和测试 RMSE(橙色)。
在这种情况下,诊断图显示训练和测试 RMSE 稳定下降到大约 400-500 个时期,此后似乎可能发生一些过度拟合。这表现为训练 RMSE 的持续下降和测试 RMSE 的增加。
![Diagnostic Line Plot of the Baseline Model on the Shampoo Sales Daset](https://img.kancloud.cn/8b/be/8bbe40271495ddf18ebe2986cf83d46c_640x480.jpg)
洗发水销售数据集基线模型的诊断线图
## 输入 dropout
Dropout 可以应用于 LSTM 节点内的输入连接。
输入的丢失意味着对于给定的概率,每个 LSTM 块的输入连接上的数据将从节点激活和权重更新中排除。
在 Keras 中,在创建 LSTM 层时使用 _dropout_ 参数指定。丢失值是 0(无丢失)和 1(无连接)之间的百分比。
在这个实验中,我们将比较没有 dropout 率和 20%,40%和 60%的输入 dropout 率。
下面列出了更新的 _fit_lstm()_,_ 实验()_ 和 _run()_ 函数,用于将输入丢失与 LSTM 一起使用。
```py
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons, dropout)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
n_dropout = [0.0, 0.2, 0.4, 0.6]
# run the experiment
results = DataFrame()
for dropout in n_dropout:
results[str(dropout)] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_dropout_input.png')
```
运行此实验会打印每个已评估配置的描述性统计信息。
结果表明,平均输入 dropout 率为 40%会带来更好的表现,但 dropout 率为 20%,40%和 60%的平均结果之间的差异非常小。所有人似乎都胜过 dropout。
```py
0.0 0.2 0.4 0.6
count 30.000000 30.000000 30.000000 30.000000
mean 97.578280 89.448450 88.957421 89.810789
std 7.927639 5.807239 4.070037 3.467317
min 84.749785 81.315336 80.662878 84.300135
25% 92.520968 84.712064 85.885858 87.766818
50% 97.324110 88.109654 88.790068 89.585945
75% 101.258252 93.642621 91.515127 91.109452
max 123.578235 104.528209 96.687333 99.660331
```
还会创建一个框和胡须图来比较每个配置的结果分布。
该图显示结果的扩散随输入 dropout 的增加而减少。该图还表明输入丢失率为 20%可能略低于中值测试 RMSE。
结果确实鼓励对所选 LSTM 配置使用一些输入丢失,可能设置为 40%。
![Box and Whisker Plot of Input Dropout Performance on the Shampoo Sales Dataset](https://img.kancloud.cn/c7/61/c761dc66c4952bed8345749fb89d6f1a_640x480.jpg)
洗发水销售数据集中输入 dropout 表现的盒子和晶须图
我们可以查看 40%的输入丢失如何影响模型的动态,同时适合训练数据。
下面的代码总结了 _fit_lstm()_ 和 _run()_ 函数与诊断脚本基线版本的更新。
```py
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True, dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
dropout = 0.4
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons, dropout)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_dropout_input.png')
```
运行更新的诊断会在每个训练时期之后创建训练图并测试模型的 RMSE 表现以及输入丢失。
结果显示在训练上明显增加了凸起并测试了 RMSE 轨迹,这在测试 RMSE 分数上更为明显。
我们还可以看到过度拟合的症状已经通过测试 RMSE 在整个 1000 个时期内持续下降来解决,这可能表明需要额外的训练时期来利用这种行为。
![Diagnostic Line Plot of Input Dropout Performance on the Shampoo Sales Dataset](https://img.kancloud.cn/29/e5/29e5fd2d679ba24b1357c4d72f2e8e80_640x480.jpg)
洗发水销售数据集中输入 dropout 表现的诊断线图
## 经常性 dropout
丢失也可以应用于 LSTM 单元上的循环输入信号。
在 Keras 中,这是通过在定义 LSTM 层时设置 _recurrent_dropout_ 参数来实现的。
在这个实验中,我们将比较没有 dropout 率与 20%,40%和 60%的复发 dropout 率。
下面列出了更新的 _fit_lstm()_,_ 实验()_ 和 _run()_ 函数,用于将输入丢失与 LSTM 一起使用。
```py
# fit an LSTM network to training data
def fit_lstm(train, n_batch, nb_epoch, n_neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(n_neurons, batch_input_shape=(n_batch, X.shape[1], X.shape[2]), stateful=True, recurrent_dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=n_batch, verbose=0, shuffle=False)
model.reset_states()
return model
# run a repeated experiment
def experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout):
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# run experiment
error_scores = list()
for r in range(n_repeats):
# fit the model
train_trimmed = train_scaled[2:, :]
lstm_model = fit_lstm(train_trimmed, n_batch, n_epochs, n_neurons, dropout)
# forecast test dataset
test_reshaped = test_scaled[:,0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, 1)
output = lstm_model.predict(test_reshaped, batch_size=n_batch)
predictions = list()
for i in range(len(output)):
yhat = output[i,0]
X = test_scaled[i, 0:-1]
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
return error_scores
# configure the experiment
def run():
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# configure the experiment
n_lag = 1
n_repeats = 30
n_epochs = 1000
n_batch = 4
n_neurons = 3
n_dropout = [0.0, 0.2, 0.4, 0.6]
# run the experiment
results = DataFrame()
for dropout in n_dropout:
results[str(dropout)] = experiment(series, n_lag, n_repeats, n_epochs, n_batch, n_neurons, dropout)
# summarize results
print(results.describe())
# save boxplot
results.boxplot()
pyplot.savefig('experiment_dropout_recurrent.png')
```
运行此实验会打印每个已评估配置的描述性统计信息。
平均结果表明,平均复发性 dropout 率为 20%或 40%是首选,但总体而言,结果并不比基线好多少。
```py
0.0 0.2 0.4 0.6
count 30.000000 30.000000 30.000000 30.000000
mean 95.743719 93.658016 93.706112 97.354599
std 9.222134 7.318882 5.591550 5.626212
min 80.144342 83.668154 84.585629 87.215540
25% 88.336066 87.071944 89.859503 93.940016
50% 96.703481 92.522428 92.698024 97.119864
75% 101.902782 100.554822 96.252689 100.915336
max 113.400863 106.222955 104.347850 114.160922
```
还会创建一个框和胡须图来比较每个配置的结果分布。
该图显示了更紧密的分布,反复 dropout 率为 40%,相比之下,20%和基线,可能使这种配置更可取。该图还强调,当使用反复丢失时,分布中的最小(最佳)测试 RMSE 似乎已受到影响,从而提供更差的表现。
![Box and Whisker Plot of Recurrent Dropout Performance on the Shampoo Sales Dataset](https://img.kancloud.cn/1b/4a/1b4a0ad9d9b9f7f496781bc8abbd4122_640x480.jpg)
洗发水销售数据集中反复 dropout 表现的盒子和晶须图
我们可以查看 40%的经常性 dropout 率如何影响模型的动态,同时适合训练数据。
下面的代码总结了 _fit_lstm()_ 和 _run()_ 函数与诊断脚本基线版本的更新。
```py
# fit an LSTM network to training data
def fit_lstm(train, test, raw, scaler, batch_size, nb_epoch, neurons, dropout):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
# prepare model
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True, recurrent_dropout=dropout))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
# fit model
train_rmse, test_rmse = list(), list()
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
model.reset_states()
# evaluate model on train data
raw_train = raw[-(len(train)+len(test)+1):-len(test)]
train_rmse.append(evaluate(model, raw_train, train, scaler, 0, batch_size))
# evaluate model on test data
raw_test = raw[-(len(test)+1):]
test_rmse.append(evaluate(model, raw_test, test, scaler, 0, batch_size))
history = DataFrame()
history['train'], history['test'] = train_rmse, test_rmse
return history
# run diagnostic experiments
def run():
# config
n_lag = 1
n_repeats = 10
n_epochs = 1000
n_batch = 4
n_neurons = 3
dropout = 0.4
# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, n_lag)
supervised_values = supervised.values[n_lag:,:]
# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# fit and evaluate model
train_trimmed = train_scaled[2:, :]
# run diagnostic tests
for i in range(n_repeats):
history = fit_lstm(train_trimmed, test_scaled, raw_values, scaler, n_batch, n_epochs, n_neurons, dropout)
pyplot.plot(history['train'], color='blue')
pyplot.plot(history['test'], color='orange')
print('%d) TrainRMSE=%f, TestRMSE=%f' % (i+1, history['train'].iloc[-1], history['test'].iloc[-1]))
pyplot.savefig('diagnostic_dropout_recurrent.png')
```
运行更新的诊断会在每个训练时期之后创建训练图并测试模型的 RMSE 表现以及输入丢失。
该图显示了测试 RMSE 迹线上增加的凸起,对训练 RMSE 迹线几乎没有影响。该图还表明,在大约 500 个时期之后,如果不是测试 RMSE 的增加趋势,则该平台也是如此。
至少在这个 LSTM 配置和这个问题上,可能反复发生的丢失可能不会增加太多价值。
![Diagnostic Line Plot of Recurrent Dropout Performance on the Shampoo Sales Dataset](https://img.kancloud.cn/bd/a6/bda6ad12c48f33c3ab9d350dd40bbe0e_640x480.jpg)
洗发水销售数据集中经常性 dropout 表现的诊断线图
## 扩展
本节列出了在完成本教程后您可能希望考虑进一步实验的一些想法。
* **输入层丢失**。可能值得探讨在输入层上使用压差以及它如何影响 LSTM 的表现和过度拟合。
* **组合输入和循环**。可能值得探索输入和重复丢失的组合,以查看是否可以提供任何额外的好处。
* **其他正则化方法**。使用 LSTM 网络探索其他正则化方法可能是值得的,例如各种输入,循环和偏置权重正则化函数。
## 进一步阅读
有关在 Keras 中使用 MLP 模型退出的更多信息,请参阅帖子:
* [具有 Keras 的深度学习模型中的丢失正则化](http://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/)
以下是一些关于 LSTM 网络 dropout 的论文,您可能会发现这些论文对于进一步阅读非常有用。
* [循环神经网络正则化](https://arxiv.org/abs/1409.2329)
* [dropout 在循环神经网络中的理论基础应用](https://arxiv.org/abs/1512.05287)
* [Dropout 改进了手写识别的循环神经网络](https://arxiv.org/abs/1312.4569)
## 摘要
在本教程中,您了解了如何将 dropout 与 LSTM 一起用于时间序列预测。
具体来说,你学到了:
* 如何设计一个强大的测试工具来评估 LSTM 网络的时间序列预测。
* 如何在 LSTM 上配置输入权重丢失以进行时间序列预测。
* 如何在 LSTM 上配置循环重量丢失以进行时间序列预测。
您对使用 LSTM 网络的丢失有任何疑问吗?
在下面的评论中提出您的问题,我会尽力回答。
- Machine Learning Mastery 应用机器学习教程
- 5竞争机器学习的好处
- 过度拟合的简单直觉,或者为什么测试训练数据是一个坏主意
- 特征选择简介
- 应用机器学习作为一个搜索问题的温和介绍
- 为什么应用机器学习很难
- 为什么我的结果不如我想的那么好?你可能过度拟合了
- 用ROC曲线评估和比较分类器表现
- BigML评论:发现本机学习即服务平台的聪明功能
- BigML教程:开发您的第一个决策树并进行预测
- 构建生产机器学习基础设施
- 分类准确性不够:可以使用更多表现测量
- 一种预测模型的巧妙应用
- 机器学习项目中常见的陷阱
- 数据清理:将凌乱的数据转换为整洁的数据
- 机器学习中的数据泄漏
- 数据,学习和建模
- 数据管理至关重要以及为什么需要认真对待它
- 将预测模型部署到生产中
- 参数和超参数之间有什么区别?
- 测试和验证数据集之间有什么区别?
- 发现特征工程,如何设计特征以及如何获得它
- 如何开始使用Kaggle
- 超越预测
- 如何在评估机器学习算法时选择正确的测试选项
- 如何定义机器学习问题
- 如何评估机器学习算法
- 如何获得基线结果及其重要性
- 如何充分利用机器学习数据
- 如何识别数据中的异常值
- 如何提高机器学习效果
- 如何在竞争机器学习中踢屁股
- 如何知道您的机器学习模型是否具有良好的表现
- 如何布局和管理您的机器学习项目
- 如何为机器学习准备数据
- 如何减少最终机器学习模型中的方差
- 如何使用机器学习结果
- 如何解决像数据科学家这样的问题
- 通过数据预处理提高模型精度
- 处理机器学习的大数据文件的7种方法
- 建立机器学习系统的经验教训
- 如何使用机器学习清单可靠地获得准确的预测(即使您是初学者)
- 机器学习模型运行期间要做什么
- 机器学习表现改进备忘单
- 来自世界级从业者的机器学习技巧:Phil Brierley
- 模型预测精度与机器学习中的解释
- 竞争机器学习的模型选择技巧
- 机器学习需要多少训练数据?
- 如何系统地规划和运行机器学习实验
- 应用机器学习过程
- 默认情况下可重现的机器学习结果
- 10个实践应用机器学习的标准数据集
- 简单的三步法到最佳机器学习算法
- 打击机器学习数据集中不平衡类的8种策略
- 模型表现不匹配问题(以及如何处理)
- 黑箱机器学习的诱惑陷阱
- 如何培养最终的机器学习模型
- 使用探索性数据分析了解您的问题并获得更好的结果
- 什么是数据挖掘和KDD
- 为什么One-Hot在机器学习中编码数据?
- 为什么你应该在你的机器学习问题上进行抽样检查算法
- 所以,你正在研究机器学习问题......
- Machine Learning Mastery Keras 深度学习教程
- Keras 中神经网络模型的 5 步生命周期
- 在 Python 迷你课程中应用深度学习
- Keras 深度学习库的二元分类教程
- 如何用 Keras 构建多层感知器神经网络模型
- 如何在 Keras 中检查深度学习模型
- 10 个用于 Amazon Web Services 深度学习的命令行秘籍
- 机器学习卷积神经网络的速成课程
- 如何在 Python 中使用 Keras 进行深度学习的度量
- 深度学习书籍
- 深度学习课程
- 你所知道的深度学习是一种谎言
- 如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
- 神经网络中批量和迭代之间的区别是什么?
- 在 Keras 展示深度学习模型训练历史
- 基于 Keras 的深度学习模型中的dropout正则化
- 评估 Keras 中深度学习模型的表现
- 如何评价深度学习模型的技巧
- 小批量梯度下降的简要介绍以及如何配置批量大小
- 在 Keras 中获得深度学习帮助的 9 种方法
- 如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
- 用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
- 如何用 Keras 进行预测
- 用 Keras 进行深度学习的图像增强
- 8 个深度学习的鼓舞人心的应用
- Python 深度学习库 Keras 简介
- Python 深度学习库 TensorFlow 简介
- Python 深度学习库 Theano 简介
- 如何使用 Keras 函数式 API 进行深度学习
- Keras 深度学习库的多类分类教程
- 多层感知器神经网络速成课程
- 基于卷积神经网络的 Keras 深度学习库中的目标识别
- 流行的深度学习库
- 用深度学习预测电影评论的情感
- Python 中的 Keras 深度学习库的回归教程
- 如何使用 Keras 获得可重现的结果
- 如何在 Linux 服务器上运行深度学习实验
- 保存并加载您的 Keras 深度学习模型
- 用 Keras 逐步开发 Python 中的第一个神经网络
- 用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
- 在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
- 如何使用预训练的 VGG 模型对照片中的物体进行分类
- 在 Python 和 Keras 中对深度学习模型使用学习率调度
- 如何在 Keras 中可视化深度学习神经网络模型
- 什么是深度学习?
- 何时使用 MLP,CNN 和 RNN 神经网络
- 为什么用随机权重初始化神经网络?
- Machine Learning Mastery 深度学习 NLP 教程
- 深度学习在自然语言处理中的 7 个应用
- 如何实现自然语言处理的波束搜索解码器
- 深度学习文档分类的最佳实践
- 关于自然语言处理的热门书籍
- 在 Python 中计算文本 BLEU 分数的温和介绍
- 使用编码器 - 解码器模型的用于字幕生成的注入和合并架构
- 如何用 Python 清理机器学习的文本
- 如何配置神经机器翻译的编码器 - 解码器模型
- 如何开始深度学习自然语言处理(7 天迷你课程)
- 自然语言处理的数据集
- 如何开发一种深度学习的词袋模型来预测电影评论情感
- 深度学习字幕生成模型的温和介绍
- 如何在 Keras 中定义神经机器翻译的编码器 - 解码器序列 - 序列模型
- 如何利用小实验在 Keras 中开发字幕生成模型
- 如何从头开发深度学习图片标题生成器
- 如何在 Keras 中开发基于字符的神经语言模型
- 如何开发用于情感分析的 N-gram 多通道卷积神经网络
- 如何从零开始开发神经机器翻译系统
- 如何在 Python 中用 Keras 开发基于单词的神经语言模型
- 如何开发一种预测电影评论情感的词嵌入模型
- 如何使用 Gensim 在 Python 中开发词嵌入
- 用于文本摘要的编码器 - 解码器深度学习模型
- Keras 中文本摘要的编码器 - 解码器模型
- 用于神经机器翻译的编码器 - 解码器循环神经网络模型
- 浅谈词袋模型
- 文本摘要的温和介绍
- 编码器 - 解码器循环神经网络中的注意力如何工作
- 如何利用深度学习自动生成照片的文本描述
- 如何开发一个单词级神经语言模型并用它来生成文本
- 浅谈神经机器翻译
- 什么是自然语言处理?
- 牛津自然语言处理深度学习课程
- 如何为机器翻译准备法语到英语的数据集
- 如何为情感分析准备电影评论数据
- 如何为文本摘要准备新闻文章
- 如何准备照片标题数据集以训练深度学习模型
- 如何使用 Keras 为深度学习准备文本数据
- 如何使用 scikit-learn 为机器学习准备文本数据
- 自然语言处理神经网络模型入门
- 对自然语言处理的深度学习的承诺
- 在 Python 中用 Keras 进行 LSTM 循环神经网络的序列分类
- 斯坦福自然语言处理深度学习课程评价
- 统计语言建模和神经语言模型的简要介绍
- 使用 Keras 在 Python 中进行 LSTM 循环神经网络的文本生成
- 浅谈机器学习中的转换
- 如何使用 Keras 将词嵌入层用于深度学习
- 什么是用于文本的词嵌入
- Machine Learning Mastery 深度学习时间序列教程
- 如何开发人类活动识别的一维卷积神经网络模型
- 人类活动识别的深度学习模型
- 如何评估人类活动识别的机器学习算法
- 时间序列预测的多层感知器网络探索性配置
- 比较经典和机器学习方法进行时间序列预测的结果
- 如何通过深度学习快速获得时间序列预测的结果
- 如何利用 Python 处理序列预测问题中的缺失时间步长
- 如何建立预测大气污染日的概率预测模型
- 如何开发一种熟练的机器学习时间序列预测模型
- 如何构建家庭用电自回归预测模型
- 如何开发多步空气污染时间序列预测的自回归预测模型
- 如何制定多站点多元空气污染时间序列预测的基线预测
- 如何开发时间序列预测的卷积神经网络模型
- 如何开发卷积神经网络用于多步时间序列预测
- 如何开发单变量时间序列预测的深度学习模型
- 如何开发 LSTM 模型用于家庭用电的多步时间序列预测
- 如何开发 LSTM 模型进行时间序列预测
- 如何开发多元多步空气污染时间序列预测的机器学习模型
- 如何开发多层感知器模型进行时间序列预测
- 如何开发人类活动识别时间序列分类的 RNN 模型
- 如何开始深度学习的时间序列预测(7 天迷你课程)
- 如何网格搜索深度学习模型进行时间序列预测
- 如何对单变量时间序列预测的网格搜索朴素方法
- 如何在 Python 中搜索 SARIMA 模型超参数用于时间序列预测
- 如何在 Python 中进行时间序列预测的网格搜索三次指数平滑
- 一个标准的人类活动识别问题的温和介绍
- 如何加载和探索家庭用电数据
- 如何加载,可视化和探索复杂的多变量多步时间序列预测数据集
- 如何从智能手机数据模拟人类活动
- 如何根据环境因素预测房间占用率
- 如何使用脑波预测人眼是开放还是闭合
- 如何在 Python 中扩展长短期内存网络的数据
- 如何使用 TimeseriesGenerator 进行 Keras 中的时间序列预测
- 基于机器学习算法的室内运动时间序列分类
- 用于时间序列预测的状态 LSTM 在线学习的不稳定性
- 用于罕见事件时间序列预测的 LSTM 模型体系结构
- 用于时间序列预测的 4 种通用机器学习数据变换
- Python 中长短期记忆网络的多步时间序列预测
- 家庭用电机器学习的多步时间序列预测
- Keras 中 LSTM 的多变量时间序列预测
- 如何开发和评估朴素的家庭用电量预测方法
- 如何为长短期记忆网络准备单变量时间序列数据
- 循环神经网络在时间序列预测中的应用
- 如何在 Python 中使用差异变换删除趋势和季节性
- 如何在 LSTM 中种子状态用于 Python 中的时间序列预测
- 使用 Python 进行时间序列预测的有状态和无状态 LSTM
- 长短时记忆网络在时间序列预测中的适用性
- 时间序列预测问题的分类
- Python 中长短期记忆网络的时间序列预测
- 基于 Keras 的 Python 中 LSTM 循环神经网络的时间序列预测
- Keras 中深度学习的时间序列预测
- 如何用 Keras 调整 LSTM 超参数进行时间序列预测
- 如何在时间序列预测训练期间更新 LSTM 网络
- 如何使用 LSTM 网络的 Dropout 进行时间序列预测
- 如何使用 LSTM 网络中的特征进行时间序列预测
- 如何在 LSTM 网络中使用时间序列进行时间序列预测
- 如何利用 LSTM 网络进行权重正则化进行时间序列预测
- Machine Learning Mastery 线性代数教程
- 机器学习数学符号的基础知识
- 用 NumPy 阵列轻松介绍广播
- 如何从 Python 中的 Scratch 计算主成分分析(PCA)
- 用于编码器审查的计算线性代数
- 10 机器学习中的线性代数示例
- 线性代数的温和介绍
- 用 NumPy 轻松介绍 Python 中的 N 维数组
- 机器学习向量的温和介绍
- 如何在 Python 中为机器学习索引,切片和重塑 NumPy 数组
- 机器学习的矩阵和矩阵算法简介
- 温和地介绍机器学习的特征分解,特征值和特征向量
- NumPy 对预期价值,方差和协方差的简要介绍
- 机器学习矩阵分解的温和介绍
- 用 NumPy 轻松介绍机器学习的张量
- 用于机器学习的线性代数中的矩阵类型简介
- 用于机器学习的线性代数备忘单
- 线性代数的深度学习
- 用于机器学习的线性代数(7 天迷你课程)
- 机器学习的线性代数
- 机器学习矩阵运算的温和介绍
- 线性代数评论没有废话指南
- 学习机器学习线性代数的主要资源
- 浅谈机器学习的奇异值分解
- 如何用线性代数求解线性回归
- 用于机器学习的稀疏矩阵的温和介绍
- 机器学习中向量规范的温和介绍
- 学习线性代数用于机器学习的 5 个理由
- Machine Learning Mastery LSTM 教程
- Keras中长短期记忆模型的5步生命周期
- 长短时记忆循环神经网络的注意事项
- CNN长短期记忆网络
- 逆向神经网络中的深度学习速成课程
- 可变长度输入序列的数据准备
- 如何用Keras开发用于Python序列分类的双向LSTM
- 如何开发Keras序列到序列预测的编码器 - 解码器模型
- 如何诊断LSTM模型的过度拟合和欠拟合
- 如何开发一种编码器 - 解码器模型,注重Keras中的序列到序列预测
- 编码器 - 解码器长短期存储器网络
- 神经网络中爆炸梯度的温和介绍
- 对时间反向传播的温和介绍
- 生成长短期记忆网络的温和介绍
- 专家对长短期记忆网络的简要介绍
- 在序列预测问题上充分利用LSTM
- 编辑器 - 解码器循环神经网络全局注意的温和介绍
- 如何利用长短时记忆循环神经网络处理很长的序列
- 如何在Python中对一个热编码序列数据
- 如何使用编码器 - 解码器LSTM来回显随机整数序列
- 具有注意力的编码器 - 解码器RNN体系结构的实现模式
- 学习使用编码器解码器LSTM循环神经网络添加数字
- 如何学习长短时记忆循环神经网络回声随机整数
- 具有Keras的长短期记忆循环神经网络的迷你课程
- LSTM自动编码器的温和介绍
- 如何用Keras中的长短期记忆模型进行预测
- 用Python中的长短期内存网络演示内存
- 基于循环神经网络的序列预测模型的简要介绍
- 深度学习的循环神经网络算法之旅
- 如何重塑Keras中长短期存储网络的输入数据
- 了解Keras中LSTM的返回序列和返回状态之间的差异
- RNN展开的温和介绍
- 5学习LSTM循环神经网络的简单序列预测问题的例子
- 使用序列进行预测
- 堆叠长短期内存网络
- 什么是教师强制循环神经网络?
- 如何在Python中使用TimeDistributed Layer for Long Short-Term Memory Networks
- 如何准备Keras中截断反向传播的序列预测
- 如何在使用LSTM进行训练和预测时使用不同的批量大小
- Machine Learning Mastery 机器学习算法教程
- 机器学习算法之旅
- 用于机器学习的装袋和随机森林集合算法
- 从头开始实施机器学习算法的好处
- 更好的朴素贝叶斯:从朴素贝叶斯算法中获取最多的12个技巧
- 机器学习的提升和AdaBoost
- 选择机器学习算法:Microsoft Azure的经验教训
- 机器学习的分类和回归树
- 什么是机器学习中的混淆矩阵
- 如何使用Python从头开始创建算法测试工具
- 通过创建机器学习算法的目标列表来控制
- 从头开始停止编码机器学习算法
- 在实现机器学习算法时,不要从开源代码开始
- 不要使用随机猜测作为基线分类器
- 浅谈机器学习中的概念漂移
- 温和介绍机器学习中的偏差 - 方差权衡
- 机器学习的梯度下降
- 机器学习算法如何工作(他们学习输入到输出的映射)
- 如何建立机器学习算法的直觉
- 如何实现机器学习算法
- 如何研究机器学习算法行为
- 如何学习机器学习算法
- 如何研究机器学习算法
- 如何研究机器学习算法
- 如何在Python中从头开始实现反向传播算法
- 如何用Python从头开始实现Bagging
- 如何用Python从头开始实现基线机器学习算法
- 如何在Python中从头开始实现决策树算法
- 如何用Python从头开始实现学习向量量化
- 如何利用Python从头开始随机梯度下降实现线性回归
- 如何利用Python从头开始随机梯度下降实现Logistic回归
- 如何用Python从头开始实现机器学习算法表现指标
- 如何在Python中从头开始实现感知器算法
- 如何在Python中从零开始实现随机森林
- 如何在Python中从头开始实现重采样方法
- 如何用Python从头开始实现简单线性回归
- 如何用Python从头开始实现堆栈泛化(Stacking)
- K-Nearest Neighbors for Machine Learning
- 学习机器学习的向量量化
- 机器学习的线性判别分析
- 机器学习的线性回归
- 使用梯度下降进行机器学习的线性回归教程
- 如何在Python中从头开始加载机器学习数据
- 机器学习的Logistic回归
- 机器学习的Logistic回归教程
- 机器学习算法迷你课程
- 如何在Python中从头开始实现朴素贝叶斯
- 朴素贝叶斯机器学习
- 朴素贝叶斯机器学习教程
- 机器学习算法的过拟合和欠拟合
- 参数化和非参数机器学习算法
- 理解任何机器学习算法的6个问题
- 在机器学习中拥抱随机性
- 如何使用Python从头开始扩展机器学习数据
- 机器学习的简单线性回归教程
- 有监督和无监督的机器学习算法
- 用于机器学习的支持向量机
- 在没有数学背景的情况下理解机器学习算法的5种技术
- 最好的机器学习算法
- 教程从头开始在Python中实现k-Nearest Neighbors
- 通过从零开始实现它们来理解机器学习算法(以及绕过坏代码的策略)
- 使用随机森林:在121个数据集上测试179个分类器
- 为什么从零开始实现机器学习算法
- Machine Learning Mastery 机器学习入门教程
- 机器学习入门的四个步骤:初学者入门与实践的自上而下策略
- 你应该培养的 5 个机器学习领域
- 一种选择机器学习算法的数据驱动方法
- 机器学习中的分析与数值解
- 应用机器学习是一种精英政治
- 机器学习的基本概念
- 如何成为数据科学家
- 初学者如何在机器学习中弄错
- 机器学习的最佳编程语言
- 构建机器学习组合
- 机器学习中分类与回归的区别
- 评估自己作为数据科学家并利用结果建立惊人的数据科学团队
- 探索 Kaggle 大师的方法论和心态:对 Diogo Ferreira 的采访
- 扩展机器学习工具并展示掌握
- 通过寻找地标开始机器学习
- 温和地介绍预测建模
- 通过提供结果在机器学习中获得梦想的工作
- 如何开始机器学习:自学蓝图
- 开始并在机器学习方面取得进展
- 应用机器学习的 Hello World
- 初学者如何使用小型项目开始机器学习并在 Kaggle 上进行竞争
- 我如何开始机器学习? (简短版)
- 我是如何开始机器学习的
- 如何在机器学习中取得更好的成绩
- 如何从在银行工作到担任 Target 的高级数据科学家
- 如何学习任何机器学习工具
- 使用小型目标项目深入了解机器学习工具
- 获得付费申请机器学习
- 映射机器学习工具的景观
- 机器学习开发环境
- 机器学习金钱
- 程序员的机器学习
- 机器学习很有意思
- 机器学习是 Kaggle 比赛
- 机器学习现在很受欢迎
- 机器学习掌握方法
- 机器学习很重要
- 机器学习 Q& A:概念漂移,更好的结果和学习更快
- 缺乏自学机器学习的路线图
- 机器学习很重要
- 快速了解任何机器学习工具(即使您是初学者)
- 机器学习工具
- 找到你的机器学习部落
- 机器学习在一年
- 通过竞争一致的大师 Kaggle
- 5 程序员在机器学习中开始犯错误
- 哲学毕业生到机器学习从业者(Brian Thomas 采访)
- 机器学习入门的实用建议
- 实用机器学习问题
- 使用来自 UCI 机器学习库的数据集练习机器学习
- 使用秘籍的任何机器学习工具快速启动
- 程序员可以进入机器学习
- 程序员应该进入机器学习
- 项目焦点:Shashank Singh 的人脸识别
- 项目焦点:使用 Mahout 和 Konstantin Slisenko 进行堆栈交换群集
- 机器学习自学指南
- 4 个自学机器学习项目
- ÁlvaroLemos 如何在数据科学团队中获得机器学习实习
- 如何思考机器学习
- 现实世界机器学习问题之旅
- 有关机器学习的有用知识
- 如果我没有学位怎么办?
- 如果我不是一个优秀的程序员怎么办?
- 如果我不擅长数学怎么办?
- 为什么机器学习算法会处理以前从未见过的数据?
- 是什么阻碍了你的机器学习目标?
- 什么是机器学习?
- 机器学习适合哪里?
- 为什么要进入机器学习?
- 研究对您来说很重要的机器学习问题
- 你这样做是错的。为什么机器学习不必如此困难
- Machine Learning Mastery Sklearn 教程
- Scikit-Learn 的温和介绍:Python 机器学习库
- 使用 Python 管道和 scikit-learn 自动化机器学习工作流程
- 如何以及何时使用带有 scikit-learn 的校准分类模型
- 如何比较 Python 中的机器学习算法与 scikit-learn
- 用于机器学习开发人员的 Python 崩溃课程
- 用 scikit-learn 在 Python 中集成机器学习算法
- 使用重采样评估 Python 中机器学习算法的表现
- 使用 Scikit-Learn 在 Python 中进行特征选择
- Python 中机器学习的特征选择
- 如何使用 scikit-learn 在 Python 中生成测试数据集
- scikit-learn 中的机器学习算法秘籍
- 如何使用 Python 处理丢失的数据
- 如何开始使用 Python 进行机器学习
- 如何使用 Scikit-Learn 在 Python 中加载数据
- Python 中概率评分方法的简要介绍
- 如何用 Scikit-Learn 调整算法参数
- 如何在 Mac OS X 上安装 Python 3 环境以进行机器学习和深度学习
- 使用 scikit-learn 进行机器学习简介
- 从 shell 到一本带有 Fernando Perez 单一工具的书的 IPython
- 如何使用 Python 3 为机器学习开发创建 Linux 虚拟机
- 如何在 Python 中加载机器学习数据
- 您在 Python 中的第一个机器学习项目循序渐进
- 如何使用 scikit-learn 进行预测
- 用于评估 Python 中机器学习算法的度量标准
- 使用 Pandas 为 Python 中的机器学习准备数据
- 如何使用 Scikit-Learn 为 Python 机器学习准备数据
- 项目焦点:使用 Artem Yankov 在 Python 中进行事件推荐
- 用于机器学习的 Python 生态系统
- Python 是应用机器学习的成长平台
- Python 机器学习书籍
- Python 机器学习迷你课程
- 使用 Pandas 快速和肮脏的数据分析
- 使用 Scikit-Learn 重新调整 Python 中的机器学习数据
- 如何以及何时使用 ROC 曲线和精确调用曲线进行 Python 分类
- 使用 scikit-learn 在 Python 中保存和加载机器学习模型
- scikit-learn Cookbook 书评
- 如何使用 Anaconda 为机器学习和深度学习设置 Python 环境
- 使用 scikit-learn 在 Python 中进行 Spot-Check 分类机器学习算法
- 如何在 Python 中开发可重复使用的抽样检查算法框架
- 使用 scikit-learn 在 Python 中进行 Spot-Check 回归机器学习算法
- 使用 Python 中的描述性统计来了解您的机器学习数据
- 使用 OpenCV,Python 和模板匹配来播放“哪里是 Waldo?”
- 使用 Pandas 在 Python 中可视化机器学习数据
- Machine Learning Mastery 统计学教程
- 浅谈计算正态汇总统计量
- 非参数统计的温和介绍
- Python中常态测试的温和介绍
- 浅谈Bootstrap方法
- 浅谈机器学习的中心极限定理
- 浅谈机器学习中的大数定律
- 机器学习的所有统计数据
- 如何计算Python中机器学习结果的Bootstrap置信区间
- 浅谈机器学习的Chi-Squared测试
- 机器学习的置信区间
- 随机化在机器学习中解决混杂变量的作用
- 机器学习中的受控实验
- 机器学习统计学速成班
- 统计假设检验的关键值以及如何在Python中计算它们
- 如何在机器学习中谈论数据(统计学和计算机科学术语)
- Python中数据可视化方法的简要介绍
- Python中效果大小度量的温和介绍
- 估计随机机器学习算法的实验重复次数
- 机器学习评估统计的温和介绍
- 如何计算Python中的非参数秩相关性
- 如何在Python中计算数据的5位数摘要
- 如何在Python中从头开始编写学生t检验
- 如何在Python中生成随机数
- 如何转换数据以更好地拟合正态分布
- 如何使用相关来理解变量之间的关系
- 如何使用统计信息识别数据中的异常值
- 用于Python机器学习的随机数生成器简介
- k-fold交叉验证的温和介绍
- 如何计算McNemar的比较两种机器学习量词的测试
- Python中非参数统计显着性测试简介
- 如何在Python中使用参数统计显着性测试
- 机器学习的预测间隔
- 应用统计学与机器学习的密切关系
- 如何使用置信区间报告分类器表现
- 统计数据分布的简要介绍
- 15 Python中的统计假设检验(备忘单)
- 统计假设检验的温和介绍
- 10如何在机器学习项目中使用统计方法的示例
- Python中统计功效和功耗分析的简要介绍
- 统计抽样和重新抽样的简要介绍
- 比较机器学习算法的统计显着性检验
- 机器学习中统计容差区间的温和介绍
- 机器学习统计书籍
- 评估机器学习模型的统计数据
- 机器学习统计(7天迷你课程)
- 用于机器学习的简明英语统计
- 如何使用统计显着性检验来解释机器学习结果
- 什么是统计(为什么它在机器学习中很重要)?
- Machine Learning Mastery 时间序列入门教程
- 如何在 Python 中为时间序列预测创建 ARIMA 模型
- 用 Python 进行时间序列预测的自回归模型
- 如何回溯机器学习模型的时间序列预测
- Python 中基于时间序列数据的基本特征工程
- R 的时间序列预测热门书籍
- 10 挑战机器学习时间序列预测问题
- 如何将时间序列转换为 Python 中的监督学习问题
- 如何将时间序列数据分解为趋势和季节性
- 如何用 ARCH 和 GARCH 模拟波动率进行时间序列预测
- 如何将时间序列数据集与 Python 区分开来
- Python 中时间序列预测的指数平滑的温和介绍
- 用 Python 进行时间序列预测的特征选择
- 浅谈自相关和部分自相关
- 时间序列预测的 Box-Jenkins 方法简介
- 用 Python 简要介绍时间序列的时间序列预测
- 如何使用 Python 网格搜索 ARIMA 模型超参数
- 如何在 Python 中加载和探索时间序列数据
- 如何使用 Python 对 ARIMA 模型进行手动预测
- 如何用 Python 进行时间序列预测的预测
- 如何使用 Python 中的 ARIMA 进行样本外预测
- 如何利用 Python 模拟残差错误来纠正时间序列预测
- 使用 Python 进行数据准备,特征工程和时间序列预测的移动平均平滑
- 多步时间序列预测的 4 种策略
- 如何在 Python 中规范化和标准化时间序列数据
- 如何利用 Python 进行时间序列预测的基线预测
- 如何使用 Python 对时间序列预测数据进行功率变换
- 用于时间序列预测的 Python 环境
- 如何重构时间序列预测问题
- 如何使用 Python 重新采样和插值您的时间序列数据
- 用 Python 编写 SARIMA 时间序列预测
- 如何在 Python 中保存 ARIMA 时间序列预测模型
- 使用 Python 进行季节性持久性预测
- 基于 ARIMA 的 Python 历史规模敏感性预测技巧分析
- 简单的时间序列预测模型进行测试,这样你就不会欺骗自己
- 标准多变量,多步骤和多站点时间序列预测问题
- 如何使用 Python 检查时间序列数据是否是固定的
- 使用 Python 进行时间序列数据可视化
- 7 个机器学习的时间序列数据集
- 时间序列预测案例研究与 Python:波士顿每月武装抢劫案
- Python 的时间序列预测案例研究:巴尔的摩的年度用水量
- 使用 Python 进行时间序列预测研究:法国香槟的月销售额
- 使用 Python 的置信区间理解时间序列预测不确定性
- 11 Python 中的经典时间序列预测方法(备忘单)
- 使用 Python 进行时间序列预测表现测量
- 使用 Python 7 天迷你课程进行时间序列预测
- 时间序列预测作为监督学习
- 什么是时间序列预测?
- 如何使用 Python 识别和删除时间序列数据的季节性
- 如何在 Python 中使用和删除时间序列数据中的趋势信息
- 如何在 Python 中调整 ARIMA 参数
- 如何用 Python 可视化时间序列残差预测错误
- 白噪声时间序列与 Python
- 如何通过时间序列预测项目
- Machine Learning Mastery XGBoost 教程
- 通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
- 如何在 Python 中调优 XGBoost 的多线程支持
- 如何配置梯度提升算法
- 在 Python 中使用 XGBoost 进行梯度提升的数据准备
- 如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
- 如何在 Python 中使用 XGBoost 评估梯度提升模型
- 在 Python 中使用 XGBoost 的特征重要性和特征选择
- 浅谈机器学习的梯度提升算法
- 应用机器学习的 XGBoost 简介
- 如何在 macOS 上为 Python 安装 XGBoost
- 如何在 Python 中使用 XGBoost 保存梯度提升模型
- 从梯度提升开始,比较 165 个数据集上的 13 种算法
- 在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
- 如何使用 Amazon Web Services 在云中训练 XGBoost 模型
- 在 Python 中使用 XGBoost 调整梯度提升的学习率
- 如何在 Python 中使用 XGBoost 调整决策树的数量和大小
- 如何在 Python 中使用 XGBoost 可视化梯度提升决策树
- 在 Python 中开始使用 XGBoost 的 7 步迷你课程