# 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
> 来源:https://uqer.io/community/share/551cfa1ff9f06c8f339044ff
> 在本篇中,我们将介绍Q宽客常用工具之一:函数插值。接着将函数插值应用于一个实际的金融建模场景中:波动率曲面构造。
> 通过本篇的学习您将学习到:
> 1. 如何在`scipy`中使用函数插值模块:`interpolate`;
> 2. 波动率曲面构造的原理;
> 3. 将`interpolate`运用于波动率曲面构造。
## 1. 如何使用`scipy`做函数插值
函数插值,即在离散数据的基础上补插连续函数,估算出函数在其他点处的近似值的方法。在`scipy`中,所有的与函数插值相关的功能都在`scipy.interpolate`模块中
```py
from scipy import interpolate
dir(interpolate)[:5]
['Akima1DInterpolator',
'BPoly',
'BarycentricInterpolator',
'BivariateSpline',
'CloughTocher2DInterpolator']
```
作为介绍性质的本篇,我们将只关注`interpolate.spline`的使用,即样条插值方法:
+ `xk`离散的自变量值,为序列
+ `yk`对应`xk`的函数值,为与`xk`长度相同的序列
+ `xnew`需要进行插值的自变量值序列
+ `order`样条插值使用的函数基德阶数,为1时使用线性函数
```py
print interpolate.spline.__doc__
Interpolate a curve at new points using a spline fit
Parameters
----------
xk, yk : array_like
The x and y values that define the curve.
xnew : array_like
The x values where spline should estimate the y values.
order : int
Default is 3.
kind : string
One of {'smoothest'}
conds : Don't know
Don't know
Returns
-------
spline : ndarray
An array of y values; the spline evaluated at the positions `xnew`.
```
### 1.1 三角函数(`np.sin`)插值
一例胜千言!让我们这里用实际的一个示例,来说明如何在`scipy`中使用函数插值。这里的目标函数是三角函数:
![](https://box.kancloud.cn/2016-07-30_579cb7303eadb.jpg)
假设我们已经观测到的`f(x)`在离散点`x=(1,3,5,7,9,11,13)`的值:
```py
import numpy as np
from matplotlib import pylab
import seaborn as sns
font.set_size(20)
x = np.linspace(1.0, 13.0, 7)
y = np.sin(x)
pylab.figure(figsize = (12,6))
pylab.scatter(x,y, s = 85, marker='x', color = 'r')
pylab.title(u'$f(x)$离散点分布', fontproperties = font)
<matplotlib.text.Text at 0x142cafd0>
```
![](https://box.kancloud.cn/2016-07-30_579cb7305351c.png)
首先我们使用最简单的线性插值算法,这里面只要将`spline`的参数`order`设置为1即可:
```py
xnew = np.linspace(1.0,13.0,500)
ynewLinear = interpolate.spline(x,y,xnew,order = 1)
ynewLinear[:5]
array([ 0.84147098, 0.83304993, 0.82462888, 0.81620782, 0.80778677])
```
复杂一些的,也是`spline`函数默认的方法,即为样条插值,将`order`设置为3即可:
最后我们获得真实的`sin(x)`的值:
```py
ynewReal = np.sin(xnew)
ynewReal[:5]
array([ 0.84147098, 0.85421967, 0.86647437, 0.87822801, 0.88947378])
```
让我们把所有的函数画到一起,看一下插值的效果。对于我们这个例子中的目标函数而言,由于本身目标函数是光滑函数,则越高阶的样条插值的方法,插值效果越好。
```py
pylab.figure(figsize = (16,8))
pylab.plot(xnew,ynewReal)
pylab.plot(xnew,ynewLinear)
pylab.plot(xnew,ynewCubicSpline)
pylab.scatter(x,y, s = 160, marker='x', color = 'k')
pylab.legend([u'真实曲线', u'线性插值', u'样条插值', u'$f(x)$离散点'], prop = font)
pylab.title(u'$f(x)$不同插值方法拟合效果:线性插值 v.s 样条插值', fontproperties = font)
<matplotlib.text.Text at 0x1424cd50>
```
![](https://box.kancloud.cn/2016-07-30_579cb7306712a.png)
## 2. 函数插值应用 —— 期权波动率曲面构造
市场上期权价格一般以隐含波动率的形式报出,一般来讲在市场交易时间,交易员可以看到类似的波动率矩阵(Volatilitie Matrix):
```py
import pandas as pd
pd.options.display.float_format = '{:,>.2f}'.format
dates = [Date(2015,3,25), Date(2015,4,25), Date(2015,6,25), Date(2015,9,25)]
strikes = [2.2, 2.3, 2.4, 2.5, 2.6]
blackVolMatrix = np.array([[ 0.32562851, 0.29746885, 0.29260648, 0.27679993],
[ 0.28841840, 0.29196629, 0.27385023, 0.26511898],
[ 0.27659511, 0.27350773, 0.25887604, 0.25283775],
[ 0.26969754, 0.25565971, 0.25803327, 0.25407669],
[ 0.27773032, 0.24823248, 0.27340796, 0.24814975]])
table = pd.DataFrame(blackVolMatrix * 100, index = strikes, columns = dates, )
table.index.name = u'行权价'
table.columns.name = u'到期时间'
print u'2015年3月3日10时波动率矩阵'
table
2015年3月3日10时波动率矩阵
```
| 到期时间 | March 25th, 2015 | April 25th, 2015 | June 25th, 2015 | September 25th, 2015 |
| --- | --- |
| 行权价 | | | | |
| 2.20 | 32.56 | 29.75 | 29.26 | 27.68 |
| 2.30 | 28.84 | 29.20 | 27.39 | 26.51 |
| 2.40 | 27.66 | 27.35 | 25.89 | 25.28 |
| 2.50 | 26.97 | 25.57 | 25.80 | 25.41 |
| 2.60 | 27.77 | 24.82 | 27.34 | 24.81 |
交易员可以看到市场上离散值的信息,但是如果可以获得一些隐含的信息更好:例如,在2015年6月25日以及2015年9月25日之间,波动率的形状会是怎么样的?
### 2.1 方差曲面插值
我们并不是直接在波动率上进行插值,而是在方差矩阵上面进行插值。方差和波动率的关系如下:
![](https://box.kancloud.cn/2016-07-30_579cb730819a8.jpg)
所以下面我们将通过处理,获取方差矩阵(Variance Matrix):
```py
evaluationDate = Date(2015,3,3)
ttm = np.array([(d - evaluationDate) / 365.0 for d in dates])
varianceMatrix = (blackVolMatrix**2) * ttm
varianceMatrix
array([[ 0.00639109, 0.0128489 , 0.02674114, 0.04324205],
[ 0.0050139 , 0.01237794, 0.02342277, 0.03966943],
[ 0.00461125, 0.01086231, 0.02093128, 0.03607931],
[ 0.00438413, 0.0094909 , 0.02079521, 0.03643376],
[ 0.00464918, 0.00894747, 0.02334717, 0.03475378]])
```
这里的值`varianceMatrix`就是变换而得的方差矩阵。
下面我们将在行权价方向以及时间方向同时进行线性插值,具体地,行权价方向:
![](https://box.kancloud.cn/2016-07-30_579cb73096246.jpg)
时间方向:
![](https://box.kancloud.cn/2016-07-30_579cb730b0b7f.jpg)
这个过程在`scipy`中可以直接通过`interpolate`模块下`interp2d`来实现:
+ `ttm` 时间方向离散点
+ `strikes` 行权价方向离散点
+ `varianceMatrix` 方差矩阵,列对应时间维度;行对应行权价维度
+ `kind = 'linear'` 指示插值以线性方式进行
```py
interp = interpolate.interp2d(ttm, strikes, varianceMatrix, kind = 'linear')
```
返回的`interp`对象可以用于获取任意点上插值获取的方差值:
```py
interp(ttm[0], strikes[0])
array([ 0.00639109])
```
最后我们获取整个平面上所有点的方差值,再转换为波动率曲面。
```py
sMeshes = np.linspace(strikes[0], strikes[-1], 400)
tMeshes = np.linspace(ttm[0], ttm[-1], 200)
interpolatedVarianceSurface = np.zeros((len(sMeshes), len(tMeshes)))
for i, s in enumerate(sMeshes):
for j, t in enumerate(tMeshes):
interpolatedVarianceSurface[i][j] = interp(t,s)
interpolatedVolatilitySurface = np.sqrt((interpolatedVarianceSurface / tMeshes))
print u'行权价方向网格数:', np.size(interpolatedVolatilitySurface, 0)
print u'到期时间方向网格数:', np.size(interpolatedVolatilitySurface, 1)
行权价方向网格数: 400
到期时间方向网格数: 200
```
选取某一个到期时间上的波动率点,看一下插值的效果。这里我们选择到期时间最近的点:2015年3月25日:
```py
pylab.figure(figsize = (16,8))
pylab.plot(sMeshes, interpolatedVolatilitySurface[:, 0])
pylab.scatter(x = strikes, y = blackVolMatrix[:,0], s = 160,marker = 'x', color = 'r')
pylab.legend([u'波动率(线性插值)', u'波动率(离散)'], prop = font)
pylab.title(u'到期时间为2015年3月25日期权波动率', fontproperties = font)
<matplotlib.text.Text at 0xea27f90>
```
![](https://box.kancloud.cn/2016-07-30_579cb730c36b2.png)
最终,我们把整个曲面的图像画出来看看:
```py
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
maturityMesher, strikeMesher = np.meshgrid(tMeshes, sMeshes)
pylab.figure(figsize = (16,9))
ax = pylab.gca(projection = '3d')
surface = ax.plot_surface(strikeMesher, maturityMesher, interpolatedVolatilitySurface*100, cmap = cm.jet)
pylab.colorbar(surface,shrink=0.75)
pylab.title(u'2015年3月3日10时波动率曲面', fontproperties = font)
pylab.xlabel("strike")
pylab.ylabel("maturity")
ax.set_zlabel(r"volatility(%)")
<matplotlib.text.Text at 0x14e03050>
```
![](https://box.kancloud.cn/2016-07-30_579cb730d9b58.png)
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究