ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
# Paired trading > 来源:https://uqer.io/community/share/54895a8df9f06c31c3950ca0 ##配对交易 策略思路 寻找走势相关且股价相近的一对股票,根据其价格变动买卖 策略实现 历史前五日的Pearson相关系数若大于给定的阈值则触发买卖操作 ```py from scipy.stats.stats import pearsonr start = datetime(2013, 1, 1) end = datetime(2014, 12, 1) benchmark = 'HS300' universe = ['000559.XSHE', '600126.XSHG'] capital_base = 1e6 corlen = 5 def initialize(account): add_history('hist', corlen) account.cutoff = 0.9 account.prev_prc1 = 0 account.prev_prc2 = 0 account.prev_prcb = 0 def handle_data(account, data): stk1 = universe[0] stk2 = universe[1] prc1 = data[stk1]['closePrice'] prc2 = data[stk2]['closePrice'] prcb = data['HS300']['return'] px1 = account.hist[stk1]['closePrice'].values px2 = account.hist[stk2]['closePrice'].values pxb = account.hist['HS300']['return'].values corval, pval = pearsonr(px1, px2) mov1, mov2 = adj(prc1, prc2, prcb, account.prev_prc1, account.prev_prc2, account.prev_prcb) amount =1e4 / prc2 if (mov1 > 0) and (abs(corval) > account.cutoff): order(stk2, amount) elif (mov1 < 0) and (abs(corval) > account.cutoff): if (account.position.stkpos.get(stk2, 0) > amount): order(stk2, -amount) else: order_to(stk2, 0) amount =1e4 / prc1 if (mov2 > 0) and (abs(corval) > account.cutoff): order(stk1, amount) elif (mov2 < 0) and (abs(corval) > account.cutoff): if (account.position.stkpos.get(stk1, 0) > amount): order(stk1, -amount) else: order_to(stk1, 0) account.prev_prc1 = prc1 account.prev_prc2 = prc2 account.prev_prcb = prcb def dmv(curr, prev): delta = curr / prev - 1 return delta def adj(x, y, base, prev_x, prev_y, prev_base): dhs = dmv(base, prev_base) dx = dmv(x, prev_x) - dhs dy = dmv(y, prev_y) - dhs return (dx, dy) ``` ![](https://box.kancloud.cn/2016-07-30_579cbac2db9df.jpg) ```py min(bt.cash) 232096.85369499651 ``` ```py import pandas as pd import numpy as np from datetime import datetime import quartz import quartz.backtest as qb import quartz.performance as qp from quartz.api import * from scipy.stats.stats import pearsonr start = datetime(2013, 1, 1) # 回测起始时间 end = datetime(2014, 12, 1) # 回测结束时间 benchmark = 'HS300' # 使用沪深 300 作为参考标准 capital_base = 1e6 # 起始资金 corlen = 5 def initialize(account): # 初始化虚拟账户状态 add_history('hist', corlen) account.cutoff = 0.9 account.prev_prc1 = 0 account.prev_prc2 = 0 account.prev_prcb = 0 def handle_data(account, data): # 每个交易日的买入卖出指令 stk1 = universe[0] stk2 = universe[1] prc1 = data[stk1]['closePrice'] prc2 = data[stk2]['closePrice'] prcb = data['HS300']['return'] px1 = account.hist[stk1]['closePrice'].values px2 = account.hist[stk2]['closePrice'].values pxb = account.hist['HS300']['return'].values corval, pval = pearsonr(px1, px2) mov1, mov2 = adj(prc1, prc2, prcb, account.prev_prc1, account.prev_prc2, account.prev_prcb) #amount = int( 0.08 * capital_base / prc2) amount =1e4 / prc2 if (mov1 > 0) and (abs(corval) > account.cutoff): order(stk2, amount) elif (mov1 < 0) and (abs(corval) > account.cutoff): if (account.position.stkpos.get(stk2, 0) > amount): order(stk2, -amount) else: order_to(stk2, 0) #amount = int(0.08 * capital_base / prc1) amount =1e4 / prc1 if (mov2 > 0) and (abs(corval) > account.cutoff): order(stk1, amount) elif (mov2 < 0) and (abs(corval) > account.cutoff): if (account.position.stkpos.get(stk1, 0) > amount): order(stk1, -amount) else: order_to(stk1, 0) account.prev_prc1 = prc1 account.prev_prc2 = prc2 account.prev_prcb = prcb def dmv(curr, prev): delta = curr / prev - 1 return delta def adj(x, y, base, prev_x, prev_y, prev_base): dhs = dmv(base, prev_base) dx = dmv(x, prev_x) - dhs dy = dmv(y, prev_y) - dhs return (dx, dy) pool_raw = pd.read_csv("po.pair.2012.csv") pool = [] for i in range(len(pool_raw)): s1, s2 = pool_raw.loc[i].tolist() if [s2, s1] not in pool: pool.append([s1, s2]) outfile = [] for i, universe in enumerate(pool): print i try: bt = qb.backtest(start, end, benchmark, universe, capital_base, initialize = initialize, handle_data = handle_data) perf = qp.perf_parse(bt) outfile.append(universe + [perf["annualized_return"], perf["sharpe"]]) except: pass keys = ['stock1', 'stock2', 'annualized_return', 'sharpe'] outdict = {} outfile = zip(*sorted(outfile, key=lambda x:x[2], reverse=True)) for i,k in enumerate(keys): outdict[k] = outfile[i] outdict = pd.DataFrame(outdict).loc[:, keys] outdict ['000066.XSHE', '000707.XSHE'] ['000066.XSHE', '600117.XSHG'] ['000066.XSHE', '600126.XSHG'] ['000066.XSHE', '600819.XSHG'] ['000089.XSHE', '600035.XSHG'] ['000089.XSHE', '600037.XSHG'] ['000089.XSHE', '600595.XSHG'] ['000159.XSHE', '000967.XSHE'] ['000159.XSHE', '600595.XSHG'] ['000417.XSHE', '000541.XSHE'] ['000417.XSHE', '000685.XSHE'] ['000417.XSHE', '600875.XSHG'] ['000425.XSHE', '000528.XSHE'] ['000507.XSHE', '600391.XSHG'] ['000541.XSHE', '000987.XSHE'] ['000541.XSHE', '600330.XSHG'] ['000541.XSHE', '600883.XSHG'] ['000554.XSHE', '000707.XSHE'] ['000559.XSHE', '600026.XSHG'] ['000559.XSHE', '600126.XSHG'] ['000559.XSHE', '600477.XSHG'] ['000559.XSHE', '600581.XSHG'] ['000559.XSHE', '601666.XSHG'] ['000635.XSHE', '000707.XSHE'] ['000635.XSHE', '600068.XSHG'] ['000635.XSHE', '600117.XSHG'] ['000635.XSHE', '600188.XSHG'] ['000635.XSHE', '600295.XSHG'] ['000635.XSHE', '600550.XSHG'] ['000635.XSHE', '600819.XSHG'] ['000635.XSHE', '601168.XSHG'] ['000635.XSHE', '601233.XSHG'] ['000650.XSHE', '600261.XSHG'] ['000683.XSHE', '000936.XSHE'] ['000683.XSHE', '600595.XSHG'] ['000685.XSHE', '000988.XSHE'] ['000685.XSHE', '601101.XSHG'] ['000698.XSHE', '000949.XSHE'] ['000707.XSHE', '000911.XSHE'] ['000707.XSHE', '000969.XSHE'] ['000707.XSHE', '000987.XSHE'] ['000707.XSHE', '600117.XSHG'] ['000707.XSHE', '600295.XSHG'] ['000707.XSHE', '600550.XSHG'] ['000707.XSHE', '600831.XSHG'] ['000707.XSHE', '601168.XSHG'] ['000707.XSHE', '601233.XSHG'] ['000708.XSHE', '600327.XSHG'] ['000709.XSHE', '601107.XSHG'] ['000709.XSHE', '601618.XSHG'] ['000717.XSHE', '600282.XSHG'] ['000717.XSHE', '600307.XSHG'] ['000717.XSHE', '600808.XSHG'] ['000761.XSHE', '600320.XSHG'] ['000761.XSHE', '600548.XSHG'] ['000822.XSHE', '600117.XSHG'] ['000830.XSHE', '600068.XSHG'] ['000830.XSHE', '600320.XSHG'] ['000830.XSHE', '600550.XSHG'] ['000877.XSHE', '601519.XSHG'] ['000898.XSHE', '600022.XSHG'] ['000898.XSHE', '600808.XSHG'] ['000911.XSHE', '600550.XSHG'] ['000916.XSHE', '600033.XSHG'] ['000916.XSHE', '600035.XSHG'] ['000916.XSHE', '600126.XSHG'] ['000930.XSHE', '600026.XSHG'] ['000932.XSHE', '600569.XSHG'] ['000933.XSHE', '600348.XSHG'] ['000933.XSHE', '600595.XSHG'] ['000936.XSHE', '600477.XSHG'] ['000937.XSHE', '600348.XSHG'] ['000937.XSHE', '600508.XSHG'] ['000937.XSHE', '600997.XSHG'] ['000937.XSHE', '601001.XSHG'] ['000939.XSHE', '600819.XSHG'] ['000967.XSHE', '600879.XSHG'] ['000969.XSHE', '600831.XSHG'] ['000973.XSHE', '600460.XSHG'] ['000987.XSHE', '600636.XSHG'] ['000987.XSHE', '600827.XSHG'] ['000987.XSHE', '601001.XSHG'] ['600008.XSHG', '600035.XSHG'] ['600012.XSHG', '600428.XSHG'] ['600020.XSHG', '600033.XSHG'] ['600020.XSHG', '600035.XSHG'] ['600026.XSHG', '600068.XSHG'] ['600026.XSHG', '600089.XSHG'] ['600026.XSHG', '600126.XSHG'] ['600026.XSHG', '600307.XSHG'] ['600026.XSHG', '600331.XSHG'] ['600026.XSHG', '600375.XSHG'] ['600026.XSHG', '600581.XSHG'] ['600026.XSHG', '600963.XSHG'] ['600026.XSHG', '601666.XSHG'] ['600026.XSHG', '601898.XSHG'] ['600033.XSHG', '600035.XSHG'] ['600035.XSHG', '600126.XSHG'] ['600035.XSHG', '600269.XSHG'] ['600035.XSHG', '600307.XSHG'] ['600035.XSHG', '600586.XSHG'] ['600037.XSHG', '600327.XSHG'] ['600068.XSHG', '600126.XSHG'] ['600068.XSHG', '600269.XSHG'] ['600068.XSHG', '600320.XSHG'] ['600068.XSHG', '600550.XSHG'] ['600068.XSHG', '601001.XSHG'] ['600068.XSHG', '601666.XSHG'] ['600089.XSHG', '600581.XSHG'] ['600100.XSHG', '600117.XSHG'] ['600117.XSHG', '600295.XSHG'] ['600117.XSHG', '600339.XSHG'] ['600117.XSHG', '601168.XSHG'] ['600117.XSHG', '601233.XSHG'] ['600126.XSHG', '600282.XSHG'] ['600126.XSHG', '600327.XSHG'] ['600126.XSHG', '600569.XSHG'] ['600126.XSHG', '600581.XSHG'] ['600126.XSHG', '600808.XSHG'] ['600126.XSHG', '600963.XSHG'] ['600160.XSHG', '600449.XSHG'] ['600160.XSHG', '601216.XSHG'] ['600160.XSHG', '601311.XSHG'] ['600188.XSHG', '600295.XSHG'] ['600188.XSHG', '601001.XSHG'] ['600231.XSHG', '600282.XSHG'] ['600269.XSHG', '601618.XSHG'] ['600282.XSHG', '600307.XSHG'] ['600282.XSHG', '600569.XSHG'] ['600282.XSHG', '600808.XSHG'] ['600282.XSHG', '600963.XSHG'] ['600307.XSHG', '600581.XSHG'] ['600307.XSHG', '600808.XSHG'] ['600307.XSHG', '600963.XSHG'] ['600320.XSHG', '600548.XSHG'] ['600320.XSHG', '601600.XSHG'] ['600330.XSHG', '600883.XSHG'] ['600330.XSHG', '601268.XSHG'] ['600331.XSHG', '600581.XSHG'] ['600348.XSHG', '600508.XSHG'] ['600348.XSHG', '600997.XSHG'] ['600348.XSHG', '601001.XSHG'] ['600368.XSHG', '600527.XSHG'] ['600375.XSHG', '600581.XSHG'] ['600391.XSHG', '601100.XSHG'] ['600449.XSHG', '601311.XSHG'] ['600449.XSHG', '601519.XSHG'] ['600460.XSHG', '601908.XSHG'] ['600477.XSHG', '600581.XSHG'] ['600508.XSHG', '600546.XSHG'] ['600508.XSHG', '600997.XSHG'] ['600522.XSHG', '600973.XSHG'] ['600550.XSHG', '600831.XSHG'] ['600569.XSHG', '600808.XSHG'] ['600569.XSHG', '600963.XSHG'] ['600581.XSHG', '600963.XSHG'] ['600581.XSHG', '601001.XSHG'] ['600581.XSHG', '601168.XSHG'] ['600581.XSHG', '601666.XSHG'] ['600586.XSHG', '601268.XSHG'] ['600595.XSHG', '601001.XSHG'] ['600595.XSHG', '601168.XSHG'] ['600595.XSHG', '601666.XSHG'] ['600688.XSHG', '600871.XSHG'] ['600785.XSHG', '600827.XSHG'] ['600808.XSHG', '600963.XSHG'] ['600827.XSHG', '601001.XSHG'] ['600875.XSHG', '601001.XSHG'] ['600883.XSHG', '601268.XSHG'] ['601001.XSHG', '601101.XSHG'] ['601001.XSHG', '601168.XSHG'] ['601001.XSHG', '601666.XSHG'] ['601101.XSHG', '601666.XSHG'] ['601168.XSHG', '601666.XSHG'] ``` | | stock1 | stock2 | annualized_return | sharpe | | --- | --- | | 0 | 000761.XSHE | 600548.XSHG | 0.489473 | 2.411514 | | 1 | 000708.XSHE | 600327.XSHG | 0.447337 | 2.021270 | | 2 | 600126.XSHG | 600327.XSHG | 0.438380 | 1.946916 | | 3 | 000554.XSHE | 000707.XSHE | 0.431123 | 1.331038 | | 4 | 000939.XSHE | 600819.XSHG | 0.409471 | 1.919758 | | 5 | 600026.XSHG | 600963.XSHG | 0.408791 | 1.681338 | | 6 | 600037.XSHG | 600327.XSHG | 0.395624 | 1.691877 | | 7 | 600808.XSHG | 600963.XSHG | 0.391988 | 1.724114 | | 8 | 000559.XSHE | 600126.XSHG | 0.389043 | 1.413595 | | 9 | 000761.XSHE | 600320.XSHG | 0.384325 | 1.807262 | | 10 | 600126.XSHG | 600963.XSHG | 0.378064 | 1.662569 | | 11 | 600126.XSHG | 600808.XSHG | 0.375825 | 1.513791 | | 12 | 000936.XSHE | 600477.XSHG | 0.375135 | 1.707097 | | 13 | 000930.XSHE | 600026.XSHG | 0.372924 | 1.524350 | | 14 | 600320.XSHG | 600548.XSHG | 0.372499 | 2.083496 | | 15 | 000507.XSHE | 600391.XSHG | 0.365637 | 1.813873 | | 16 | 000559.XSHE | 601666.XSHG | 0.350235 | 0.925901 | | 17 | 600012.XSHG | 600428.XSHG | 0.327834 | 1.722317 | | 18 | 000916.XSHE | 600033.XSHG | 0.327795 | 1.406093 | | 19 | 600035.XSHG | 600126.XSHG | 0.326167 | 1.442674 | | 20 | 600827.XSHG | 601001.XSHG | 0.322705 | 0.957791 | | 21 | 000717.XSHE | 600808.XSHG | 0.320737 | 1.293439 | | 22 | 000559.XSHE | 600477.XSHG | 0.306670 | 1.218095 | | 23 | 000685.XSHE | 000988.XSHE | 0.302593 | 1.692933 | | 24 | 000683.XSHE | 000936.XSHE | 0.301804 | 1.550496 | | 25 | 000559.XSHE | 600026.XSHG | 0.295510 | 1.279449 | | 26 | 600269.XSHG | 601618.XSHG | 0.294215 | 1.486413 | | 27 | 600026.XSHG | 600126.XSHG | 0.293884 | 1.441490 | | 28 | 600068.XSHG | 600126.XSHG | 0.289457 | 1.261351 | | 29 | 000159.XSHE | 600595.XSHG | 0.288982 | 0.946365 | | 30 | 600020.XSHG | 600033.XSHG | 0.288243 | 1.489764 | | 31 | 600126.XSHG | 600569.XSHG | 0.287607 | 1.371374 | | 32 | 000635.XSHE | 600819.XSHG | 0.285135 | 1.364688 | | 33 | 600068.XSHG | 600320.XSHG | 0.273513 | 1.262845 | | 34 | 600785.XSHG | 600827.XSHG | 0.272658 | 0.842093 | | 35 | 000089.XSHE | 600595.XSHG | 0.269903 | 1.256524 | | 36 | 000898.XSHE | 600808.XSHG | 0.269717 | 1.074201 | | 37 | 000717.XSHE | 600282.XSHG | 0.267478 | 1.270872 | | 38 | 600282.XSHG | 600808.XSHG | 0.266402 | 1.181157 | | 39 | 000916.XSHE | 600035.XSHG | 0.264325 | 1.079520 | | 40 | 000089.XSHE | 600037.XSHG | 0.264201 | 1.467101 | | 41 | 600026.XSHG | 600068.XSHG | 0.263959 | 1.107977 | | 42 | 600026.XSHG | 600331.XSHG | 0.261025 | 0.977858 | | 43 | 600020.XSHG | 600035.XSHG | 0.260176 | 1.119975 | | 44 | 600569.XSHG | 600963.XSHG | 0.260006 | 1.154372 | | 45 | 600307.XSHG | 600963.XSHG | 0.258488 | 1.322409 | | 46 | 000898.XSHE | 600022.XSHG | 0.258246 | 1.100292 | | 47 | 600282.XSHG | 600963.XSHG | 0.257496 | 1.175741 | | 48 | 600307.XSHG | 600808.XSHG | 0.256071 | 1.062023 | | 49 | 600126.XSHG | 600282.XSHG | 0.255657 | 1.318676 | | 50 | 600033.XSHG | 600035.XSHG | 0.255634 | 1.055682 | | 51 | 000709.XSHE | 601618.XSHG | 0.253129 | 1.062565 | | 52 | 600026.XSHG | 600307.XSHG | 0.253119 | 0.985825 | | 53 | 600026.XSHG | 600375.XSHG | 0.250793 | 1.063874 | | 54 | 000066.XSHE | 600126.XSHG | 0.247493 | 1.469341 | | 55 | 000830.XSHE | 600320.XSHG | 0.247001 | 1.370327 | | 56 | 600320.XSHG | 601600.XSHG | 0.246534 | 0.966634 | | 57 | 000717.XSHE | 600307.XSHG | 0.245805 | 1.202750 | | 58 | 000417.XSHE | 000685.XSHE | 0.245031 | 1.189700 | | 59 | 600330.XSHG | 600883.XSHG | 0.243437 | 1.086147 | | ... | ... | ... | ... | ``` 174 rows × 4 columns ``` ```py a = list(outfile[2]) 'percentage of outperform HS300: %f' % (1.*len([x for x in a if x>0.117]) / len(a)) 'percentage of outperform HS300: 0.741379' ```