💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# [策略]基于胜率的趋势交易策略 > 来源:https://uqer.io/community/share/565bbfa4f9f06c6c8a91ae7a ## 策略说明 简单构建了一个基于胜率的趋势交易策略。认为过去一段时间(N天)内胜率较高、信息比率较高的股票会在紧随其后的几天有较好的表现 1)先根据胜率要求筛选出过去N天胜率高的股票作为预选股票(benchmark可以是定义的确定阈值,或者是某个指数相应的收益率),用aprior算法进行快速筛选。第i只股票胜率的计算方式如下: ``` winRate(i) = sum([sign(ret(i,t)-ret(bm,t))==1]/N)|t~(t-N,t) *ret(i,t): i股票在第t天的收益率; *ret(bm,t): benchmark在第t天的收益率; ``` 2)从筛选出的股票中选择过去N天信息比率(收益率/波动率)高的部分股票构建备选投资组合; 3)依据被选投资组合做买入操作,使用可用资金的50%~70%; 4)设定股票止损位在收益下跌至0.95,止损时将仓位调整至原仓位的40%~60%; 5)调仓频率为5天,股票池为沪深300。 ```py import numpy as np from CAL.PyCAL import * ################################################################################ # Back Test Functions ################################################################################ def initialize(account): # 初始化虚拟账户状态 pass ####init the univese of the choosen stock def universeInit(): stockComponent = DataAPI.MktTickRTSnapshotIndexGet(securityID=u"000300.XSHG",field=u"lastPrice,shortNM") stockCount = len(stockComponent) stockTicker = stockComponent['ticker'] stockExchgID = stockComponent['exchangeCD'] stockID = [] for index in range(stockCount): stockID.append(stockTicker[index] + '.' + stockExchgID[index]) return stockID ####deal with the trading signals def handle_data(account): # 每个交易日的买入卖出指令 ####Presettings histLength = 10 stockDataThres = 0 ####Dictionary of the return Rate closePrice = account.get_attribute_history('closePrice',histLength) retRate = {} for index in account.universe: retRate[index] = ((closePrice[index][1:] - closePrice[index][:-1])/closePrice[index][:-1]).tolist() ###ret list of the benchmark calendar = Calendar('China.SSE') startDate = calendar.advanceDate(account.current_date,'-'+str(histLength)+'B').toDateTime() benchmark = DataAPI.MktIdxdGet(ticker = "000300", field = "closeIndex", beginDate = startDate, endDate = account.current_date,pandas = '1') bmClose = benchmark['closeIndex'].tolist() bmRet = [] for index in range(len(bmClose)-1): bmRet.append((bmClose[1:][index]-bmClose[:-1][index])/bmClose[:-1][index]) ####List of transactions transactions = [] for index in range(histLength-1): tmpt = [] for stock in account.universe: if retRate[stock][index] > stockDataThres: # if retRate[stock][index] > bmRet[index]: tmpt.append(stock) transactions.append(tmpt) ####List of hot stocks hotStock = [] hotStockDict,hotStockList = apriori(transactions,0.95) for index in hotStockList: for stock in index: if stock not in hotStock: hotStock.append(stock) ####List of the portfolio retRate = {} fluctRate = {} sharpRate = {} for index in hotStock: retRate[index] = ((closePrice[index][-1] - closePrice[index][0])/closePrice[index][0]) fluctRate[index] = np.std(closePrice[index]) sharpRate[index] = retRate[index]/fluctRate[index] portfolio = [index[0] for index in sorted(sharpRate.items(),key = lambda sharpRate:sharpRate[1])[-len(sharpRate)/2:]] ####Stop loss at -0.05 validSecHist = account.get_attribute_history('closePrice',2) for index in account.valid_secpos: if (validSecHist[index][-1] - validSecHist[index][0])/validSecHist[index][0] < -0.05: order_to(index,0.45*account.valid_secpos[index]) ####Buy portfolio for index in portfolio: amount = 0.65*account.cash/len(hotStock)/account.referencePrice[index] order(index,amount) return ######################################################################################## # Aprior algorithm ######################################################################################## def elementsDet(datasets): if type(datasets) == list: elements = {} for index in datasets: for index1 in index: if elements.has_key(index1) == False: elements[index1] = 1 else: elements[index1] += 1 return elements if type(datasets) == dict: elements = {} for index in datasets: if type(index) == tuple: index = list(index) for index1 in index: if elements.has_key(index1) == False: elements[index1] = 0 else: elements[index] = 0 return elements pass def checkAssociation(subset,objset): for index in subset: if index not in objset: return False return True pass def support(subset,datasets): count = 0 for transaction in datasets: if checkAssociation(subset,transaction) == True: count += 1 return 1.0*count/len(datasets) pass def apriori(datasets,minsup): candidateIterator = [] electIterator = [] length = len(datasets) ##init part #the candidate elements = elementsDet(datasets) candidate = {} for index in elements: candidate[index] = 1.0*elements[index]/length candidateIterator.append(candidate) #the elect elect = {} for index in candidate: if candidate[index] > minsup: elect[index] = candidate[index] electIterator.append(elect) ##the update part itera = 1 while(len(electIterator[-1]) != 0): candidateOld = candidateIterator[-1] electOld = electIterator[-1] elementsOld = elementsDet(electOld) # print elementsOld candidate = {} ##the candidate for index in electOld: for index1 in elementsOld: if type(index) != list and type(index) != tuple: if index1 != index: tmp = [] tmp.append(index) tmp.append(index1) tmp.sort() if candidate.has_key(tuple(tmp)) == False: candidate[tuple(tmp)] = 0 if type(index) == tuple: tmp = list(index) if tmp.count(index1) == False: tmp1 = tmp tmp1.append(index1) tmp1.sort() if candidate.has_key(tuple(tmp1)) == False: candidate[tuple(tmp1)] = 0 candidateIterator.append(candidate) ##the elect elect = {} for index in candidate: candidate[index] = support(index,datasets) for index in candidate: if candidate[index] > minsup: elect[index] = candidate[index] electIterator.append(elect) # print 'iteartion ' + str(itera) + ' is finished!' itera += 1 ##the elected frequency sets dictionary: the value is the key's support electedDict = {} for index in electIterator: for index1 in index: electedDict[index1] = index[index1] ##the elected frequency sets lists electedList = [] for index in electIterator: tmp = [] for index1 in index: if type(index1) == tuple: tmp1 = [] for ele in index1: tmp1.append(ele) tmp.append(tmp1) else: tmp.append([str(index1)]) tmp.sort() for index1 in tmp: electedList.append(index1) return electedDict,electedList ################################################################################ # Back Test Presetting ################################################################################ start = '2011-01-01' # 回测起始时间 end = '2015-11-01' # 回测结束时间 benchmark = 'HS300' # 策略参考标准 universe = set_universe('HS300') # universe = universeInit() # 证券池,支持股票和基金 capital_base = 100000 # 起始资金 freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测 refresh_rate = 5 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd'时间间隔的单位为交易日,若freq = 'm'时间间隔为分钟 ``` ![](https://box.kancloud.cn/2016-07-30_579cbda7e04b5.jpg) ## 策略表现 + 策略能产生一定的alpha; + 策略表现与起点强相关,sharpRatio不稳定; + 策略表现会受到自身参数设定的影响,例如胜率选择周期、筛选阈值、调仓频率、建仓头寸、止损仓位等,需要依据表现对其进行优化; + 策略在2011年4月至12月、2015年6月到11月有相对好的表现,可见其相对较适用于趋势下跌的市场环境。 ## 问题探讨 因子选股模型的流程应该是怎样的? 小编认为构建因子选股的模型需要有如下过程: 1. 大类配置:根据宏观判断市场,进行市场判断(根据不同市场选择不同因子)、资产配置(不同风险性证券的配比选择➡️不同热度的行业配比选择)和策略选择(市场中性、单边做多等); 2. 选股-alpha端:对选股因子进行有效性分析,包括单因子的预测性、因子间相关性,构建多因子模型使得选股有尽可能高的alpha; 3. 选股-风险端:对alpha端的多因子模型进行风险评估,根据风险因子优化模型,使模型尽可能达到有效边界; 4. 择时-买卖时点:对根据因子模型选出的股票进行择时分析,进一步筛选投资组合中的股票及判断作何操作; 因子选股中比较basic的问题,欢迎社区的小伙伴们发表看法、评论和拍醒~