# 如何获取期权市场数据快照
> 来源:https://uqer.io/community/share/550274e4f9f06c7a9ae9a535
在本文中,我们将通过实际的市场的例子,展示如何在量化实验室中计算和展示期权的隐含波动率微笑。
```py
import pandas as pd
from matplotlib import pylab
pd.options.display.float_format = '{:,>.4f}'.format
```
## 1. 获取市场数据
在本节中,我们使用数据API获取数据,并进行一些必要的数据转换。这里我们获取的是实时报价,是本 notebook 运行时的市场快照。
+ `dataDate` 交易日
+ `dataTime` 快照时间戳
+ `optionId` 期权代码
+ `instrumentID` 期权交易代码
+ `contractType` 期权类型,CO为看着,PO为看跌
+ `strikePrice` 行权价
+ `expDate` 到期日
+ `lastPrice` 最新价
```py
optionSnapShot = OptionsDataSnapShot()
optionSnapShot[optionSnapShot.expDate == Date(2015,9,23)]
```
| | dataDate | dataTime | optionId | instrumentID | contractType | strikePrice | expDate | lastPrice |
| --- | --- |
| 30 | 2015-03-13 | 13:24:12 | 10000031 | 510050C1509M02200 | CO | 2.2000 | September 23rd, 2015 | 0.3388 |
| 31 | 2015-03-13 | 13:24:17 | 10000032 | 510050C1509M02250 | CO | 2.2500 | September 23rd, 2015 | 0.3019 |
| 32 | 2015-03-13 | 13:24:22 | 10000033 | 510050C1509M02300 | CO | 2.3000 | September 23rd, 2015 | 0.2816 |
| 33 | 2015-03-13 | 13:24:27 | 10000034 | 510050C1509M02350 | CO | 2.3500 | September 23rd, 2015 | 0.2484 |
| 34 | 2015-03-13 | 13:24:32 | 10000035 | 510050C1509M02400 | CO | 2.4000 | September 23rd, 2015 | 0.2070 |
| 35 | 2015-03-13 | 13:24:36 | 10000036 | 510050P1509M02200 | PO | 2.2000 | September 23rd, 2015 | 0.0690 |
| 36 | 2015-03-13 | 13:24:41 | 10000037 | 510050P1509M02250 | PO | 2.2500 | September 23rd, 2015 | 0.0804 |
| 37 | 2015-03-13 | 13:24:47 | 10000038 | 510050P1509M02300 | PO | 2.3000 | September 23rd, 2015 | 0.0955 |
| 38 | 2015-03-13 | 13:24:52 | 10000039 | 510050P1509M02350 | PO | 2.3500 | September 23rd, 2015 | 0.1194 |
| 39 | 2015-03-13 | 13:24:58 | 10000040 | 510050P1509M02400 | PO | 2.4000 | September 23rd, 2015 | 0.1322 |
| 46 | 2015-03-13 | 13:24:52 | 10000047 | 510050C1509M02450 | CO | 2.4500 | September 23rd, 2015 | 0.1889 |
| 47 | 2015-03-13 | 13:24:58 | 10000048 | 510050P1509M02450 | PO | 2.4500 | September 23rd, 2015 | 0.1555 |
| 54 | 2015-03-13 | 13:24:32 | 10000055 | 510050C1509M02500 | CO | 2.5000 | September 23rd, 2015 | 0.1629 |
| 55 | 2015-03-13 | 13:24:36 | 10000056 | 510050P1509M02500 | PO | 2.5000 | September 23rd, 2015 | 0.1900 |
| 62 | 2015-03-13 | 13:24:32 | 10000063 | 510050C1509M02550 | CO | 2.5500 | September 23rd, 2015 | 0.1443 |
| 63 | 2015-03-13 | 13:24:36 | 10000064 | 510050P1509M02550 | PO | 2.5500 | September 23rd, 2015 | 0.2169 |
## 2. 计算隐含波动率以及相关Greeks
接着我们可以方便的使用内置函数 BSMImpliedVolatity 计算期权的隐含波动率。
+ `price` 市场报价或者模型价格
+ `delta` 期权价格关于标的价格的一阶导数
+ `gamma` 期权价格关于标的价格的二阶导数
+ `rho` 期权价格关于无风险利率的一阶导数
+ `theta` 期权价格关于到期时间的一阶导数(每日)
+ `vega` 期权价格关于波动率的一阶导数
```py
analyticResult = OptionsAnalyticResult()
analyticResult.loc[:10, ['optionId', 'contractType', 'strikePrice', 'expDate', 'lastPrice', 'vol', 'delta', 'gamma', 'rho', 'theta', 'vega']]
```
| | optionId | contractType | strikePrice | expDate | lastPrice | vol | delta | gamma | rho | theta | vega |
| --- | --- |
| 1 | 10000002 | CO | 2.2500 | March 25th, 2015 | 0.2184 | 0.2259 | 0.9886 | 0.2947 | 0.0730 | -0.0458 | 0.0133 |
| 2 | 10000003 | CO | 2.3000 | March 25th, 2015 | 0.1730 | 0.2867 | 0.9165 | 1.1965 | 0.0687 | -0.2996 | 0.0687 |
| 3 | 10000004 | CO | 2.3500 | March 25th, 2015 | 0.1229 | 0.2177 | 0.8963 | 1.8495 | 0.0687 | -0.2670 | 0.0806 |
| 4 | 10000005 | CO | 2.4000 | March 25th, 2015 | 0.0814 | 0.2166 | 0.7676 | 3.1504 | 0.0596 | -0.4503 | 0.1367 |
| 8 | 10000009 | PO | 2.3500 | March 25th, 2015 | 0.0076 | 0.2482 | -0.1332 | 1.9373 | -0.0111 | -0.3633 | 0.0963 |
| 9 | 10000010 | PO | 2.4000 | March 25th, 2015 | 0.0159 | 0.2346 | -0.2488 | 3.0197 | -0.0207 | -0.5061 | 0.1419 |
| 10 | 10000011 | CO | 2.2000 | April 22nd, 2015 | 0.2778 | 0.2703 | 0.9081 | 0.7466 | 0.2152 | -0.1661 | 0.1347 |
## 3. 构造波动率曲面
但是对于市场参与者而言,像刚才这样仅仅观察的线的结构不够。他们需要看到整个市场以到期时间,行权价为轴的波动率曲面(Volatility Surface)。除此之外,他们更想知道,波动率曲面上,那些并不是市场报价点的值,至少是个估计。这样的波动率曲面构造,往往需要依赖某种模型,或者某种插值方法。在这一节中,我们将介绍使用 CAL 中的波动率曲面构造函数。
以下的例子基于 CAL 函数: `VolatilitySurfaceSnapShot`
### 3.1 基于SABR模型的波动率曲面
```py
volInterpolatorSABR = VolatilitySurfaceSnapShot(optionType = 'CALL', interpType = 'SABR')
volInterpolatorSABR.plotSurface(startStrike = 2.2,endStrike = 2.6)
volInterpolatorSABR.volalitltyProfileFromPeriods([2.2, 2.3, 2.4, 2.5, 2.6], ['1M', '2M', '3M', '6M', '9M'])
```
| | 1M | 2M | 3M | 6M | 9M |
| --- | --- |
| 2.2000 | 0.2720 | 0.2406 | 0.2327 | 0.2531 | 0.2545 |
| 2.3000 | 0.2048 | 0.2207 | 0.2345 | 0.2546 | 0.2557 |
| 2.4000 | 0.2245 | 0.2341 | 0.2389 | 0.2525 | 0.2533 |
| 2.5000 | 0.2241 | 0.2328 | 0.2381 | 0.2479 | 0.2484 |
| 2.6000 | 0.2311 | 0.2356 | 0.2362 | 0.2425 | 0.2429 |
![](https://box.kancloud.cn/2016-07-30_579cbdb8b73a6.png)
### 3.2 基于SVI模型的波动率曲面
```py
volInterpolatorSVI = VolatilitySurfaceSnapShot(optionType = 'CALL', interpType = 'SVI')
volInterpolatorSVI.plotSurface(startStrike = 2.2,endStrike = 2.6)
volInterpolatorSVI.volalitltyProfileFromPeriods([2.2, 2.3, 2.4, 2.5, 2.6], ['1M', '2M', '3M', '6M', '9M'])
```
| | 1M | 2M | 3M | 6M | 9M |
| --- | --- |
| 2.2000 | 0.2769 | 0.2476 | 0.2369 | 0.2566 | 0.2580 |
| 2.3000 | 0.2121 | 0.2223 | 0.2340 | 0.2535 | 0.2545 |
| 2.4000 | 0.2170 | 0.2292 | 0.2365 | 0.2504 | 0.2512 |
| 2.5000 | 0.2290 | 0.2357 | 0.2389 | 0.2474 | 0.2479 |
| 2.6000 | 0.2401 | 0.2417 | 0.2413 | 0.2508 | 0.2514 |
![](https://box.kancloud.cn/2016-07-30_579cbdb8eda62.png)
### 3.3 基于Balck波动率插值的波动率曲面
```py
volInterpolatorVariance = VolatilitySurfaceSnapShot(optionType = 'CALL', interpType = 'BlackVariance')
volInterpolatorVariance.plotSurface(startStrike = 2.2,endStrike = 2.6)
volInterpolatorVariance.volalitltyProfileFromPeriods([2.2, 2.3, 2.4, 2.5, 2.6], ['1M', '2M', '3M', '6M', '9M'])
```
| | 1M | 2M | 3M | 6M | 9M |
| --- | --- |
| 2.2000 | 0.2676 | 0.2380 | 0.2202 | 0.2516 | 0.2537 |
| 2.3000 | 0.2082 | 0.2270 | 0.2441 | 0.2660 | 0.2672 |
| 2.4000 | 0.2277 | 0.2325 | 0.2341 | 0.2404 | 0.2408 |
| 2.5000 | 0.2278 | 0.2363 | 0.2408 | 0.2463 | 0.2466 |
| 2.6000 | 0.2252 | 0.2324 | 0.2365 | 0.2517 | 0.2526 |
![](https://box.kancloud.cn/2016-07-30_579cbdb925a60.png)
## 4. 组合计算
在本节中,我们假设客户已经拥有了自己的期权头寸,希望利用量化实验室的功能进行风险监控。我们假设有以下的期权头寸:
| 期权代码 | 数量 | 行权价(¥) | 到期时间 |
| --- | --- |
| 10000004 | -7000 | 2.35 | 2015-03-25 |
| 10000011 | 2000 | 2.20 | 2015-04-22 |
| 10000027 | 5000 | 2.25 | 2015-06-24 |
| 10000047 | 3000 | 2.45 | 2015-09-23 |
然后我们构造 `OptionBook`:
```py
optionIDs = ['10000011', '10000027', '10000004', '10000047']
amounts = [2000, 5000, -7000, 3000]
optBook = OptionBook(optionIDs, amounts)
print u'期权头寸:'
optBook.description()
期权头寸:
```
| | dataDate | dataTime | optionId | instrumentID | contractType | strikePrice | expDate | lastPrice | amount |
| --- | --- |
| 0 | 2015-03-13 | 13:24:58 | 10000004 | 510050C1503M02350 | CO | 2.3500 | March 25th, 2015 | 0.1229 | -7000 |
| 1 | 2015-03-13 | 13:24:32 | 10000011 | 510050C1504M02200 | CO | 2.2000 | April 22nd, 2015 | 0.2778 | 2000 |
| 2 | 2015-03-13 | 13:24:52 | 10000027 | 510050P1506M02250 | PO | 2.2500 | June 24th, 2015 | 0.0450 | 5000 |
| 3 | 2015-03-13 | 13:24:52 | 10000047 | 510050C1509M02450 | CO | 2.4500 | September 23rd, 2015 | 0.1889 | 3000 |
### 4.1 使用Black插值模型计算组合风险
```py
optBook.riskReport(volInterpolatorVariance)
```
| | optionId | vol | price | delta | gamma | rho | theta | vega |
| --- | --- |
| 0 | 10000004 | 0.2060 | -860.3000 | -6370.8417 | -12316.8687 | -488.8540 | 1592.3418 | -508.3851 |
| 1 | 10000011 | 0.2634 | 555.6000 | 1828.2807 | 1456.7054 | 433.8000 | -307.9681 | 256.2961 |
| 2 | 10000027 | 0.2484 | 220.5000 | -1103.5286 | 4552.0335 | -831.0864 | -856.2742 | 1945.3136 |
| 3 | 10000047 | 0.2509 | 566.7000 | 1659.5347 | 2626.2983 | 1876.5865 | -503.9843 | 2135.1356 |
| portfolio | NaN | nan | 482.5000 | -3986.5549 | -3681.8315 | 990.4461 | -75.8848 | 3828.3602 |
### 4.2 使用SABR模型组合风险
```py
optBook.riskReport(volInterpolatorSABR)
```
| | optionId | vol | price | delta | gamma | rho | theta | vega |
| --- | --- |
| 0 | 10000004 | 0.2157 | -865.4365 | -6301.5462 | -12703.7735 | -483.0602 | 1800.8937 | -549.0791 |
| 1 | 10000011 | 0.2523 | 552.8686 | 1845.2432 | 1405.9255 | 438.6890 | -272.7679 | 236.9632 |
| 2 | 10000027 | 0.2347 | 194.1368 | -1048.6009 | 4677.9921 | -785.3771 | -785.2668 | 1888.5079 |
| 3 | 10000047 | 0.2511 | 566.9933 | 1659.5667 | 2624.8517 | 1876.4726 | -504.2584 | 2135.1279 |
| portfolio | NaN | nan | 448.5622 | -3845.3372 | -3995.0043 | 1046.7243 | 238.6007 | 3711.5199 |
### 4.3 使用SVI模型组合风险
```py
optBook.riskReport(volInterpolatorSVI)
```
| | optionId | vol | price | delta | gamma | rho | theta | vega |
| --- | --- |
| 0 | 10000004 | 0.2126 | -863.7639 | -6323.4081 | -12591.1718 | -484.8898 | 1734.2876 | -536.4362 |
| 1 | 10000011 | 0.2634 | 555.6000 | 1828.2807 | 1456.7054 | 433.8000 | -307.9681 | 256.2961 |
| 2 | 10000027 | 0.2355 | 195.6318 | -1051.9049 | 4670.9045 | -788.1010 | -789.3710 | 1892.0017 |
| 3 | 10000047 | 0.2495 | 563.6855 | 1659.2077 | 2641.2567 | 1877.7596 | -501.1669 | 2135.2142 |
| portfolio | NaN | nan | 451.1534 | -3887.8246 | -3822.3052 | 1038.5689 | 135.7815 | 3747.0758 |
## 5 比较不同模型的拟合市场数据的能力
这里我们比较不同的模型,对于市场数据的拟合能力。这里我们可以观察到单论你和能力 `BlackVarianceSurface > SviCalibratedVolSruface > SABRCalibratedVolSruface `。这里我们并不想下这样的结论:这些模型的优劣也有相同的排序。
另一个我们可以观察到的现象,对于近月合约(流动性最好),波动率微笑是最规则的。在这个期限上,三种模型的拟合都很到位。随着期限的上升,流动性的下降,买卖价差也随之扩大。这时候波动率微笑变得愈发不规则,这个时候一个完美拟合至市场的模型是否必要,是一个很大的问题:如果市场报价并不理性,一个优秀的模型应该可以指出这种不合理点,而不是简单的接受市场的非理性。
```py
from matplotlib import pylab
strikes = sorted(analyticResult['strikePrice'].unique())
expiries = [Date(2015,3,25),Date(2015,4,25),Date(2015,6,25),Date(2015,9,25)]
maturity = [(date - EvaluationDate())/ 365.0 for date in expiries]
volSurfaces = [volInterpolatorSABR, volInterpolatorSVI]
def plotModelFitting(index, volSurfaces, legends = ['Market Quote', 'SABR', 'SVI']):
# Using Black variance surface to extrace the rar wolatility
data = volInterpolatorVariance.volatility(strikes, maturity[index], True)
pylab.plot(strikes, data, 'r+-.', markersize = 8)
for s in volSurfaces:
data = s.volatility(strikes, maturity[index], True)
pylab.plot(strikes, data)
pylab.xlabel('Strike')
pylab.ylabel('Volatility')
pylab.legend(legends, loc = 'best', fontsize = 12)
pylab.title(u'行权结算日: ' + str(expiries[index]), fontproperties = font, fontsize = 20)
pylab.grid(True)
pylab.subplots(2,2, figsize = (16,14))
for i in range(1,5):
pylab.subplot('22' + str(i))
plotModelFitting(i-1, volSurfaces)
```
![](https://box.kancloud.cn/2016-07-30_579cbdb959f20.png)
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究