# 夏买电,东买煤?
> 来源:https://uqer.io/community/share/563c8050f9f06c713ddfeb6c
冬吃萝卜夏吃姜?冬炒煤来夏炒电 ?
行业分类 :申万二级行业
行业涨幅 :行业成分股市值加权
验证时间 :冬天(12,1,2)、夏天(7,8,9)..O、O .... 不懂什么夏至,春分,冬至啊/........
主观预测 :然并卵好吗。!!!....唱唱 [炒股歌](http://baike.baidu.com/link?url=xofsFm-IwV2ll0v-JA0W0mfIw6apRmhD2NhcA9e1oRJ_gV6P8VvHf6xfTXypGVn6C0X9zSk-bmUVew5_HpfIeq) 都能攥钱还要我们混吗?
参考 :[Uqer社区牛人李杰关于行业涨幅统计的贴子](https://uqer.io/community/share/55401d69f9f06c1c3d687fa1)
```py
#获得行业信息
def GetEquIndustry(universe,field):
num = 100
cnt_num = len(universe)/num
if cnt_num > 0:
df = pd.DataFrame({})
for i in range(cnt_num) :
sub_df = DataAPI.EquIndustryGet(secID=universe[i*num:(i+1)*num],field=field)
df = pd.concat([df,sub_df])
if (i+1)*num != len(universe):
sub_df = DataAPI.EquIndustryGet(secID=universe[(i+1)*num:],field=field)
df = pd.concat([df,sub_df])
else:
df = DataAPI.EquIndustryGet(secID=universe,field=field)
return df
```
选取行业,将行业所属股票加入`universe`
```py
from CAL.PyCAL import *
import pandas as pd
cal = Calendar('China.SSE')
universe = DataAPI.EquGet(equTypeCD='A')['secID'].tolist() #获得全A股的secID
id2nm = lambda x:x[0:6]
tk_list_A = map(id2nm,universe) #获得全A股的ticker
Ind_info = GetEquIndustry(universe=universe,field=['ticker','secShortName','industryName2']) #获得个股的申万行业分类
Ind_info_gp = Ind_info.groupby('industryName2')#按照行业分组
universe = []
Ind_tks_dic = {} #获得每个行业包含的股票
for ind_nm,sub_info in Ind_info_gp:
if ind_nm in ['电力' , '煤炭开采'] :
Ind_tks_dic[ind_nm] = sub_info.drop_duplicates('ticker')['ticker'].tolist()
universe += Ind_tks_dic[ind_nm]
# print len(universe)
```
获取所需各段时间段的数据,放入`Data_time`中
```py
from pandas import DataFrame,Series
from CAL.PyCAL import *
cal = Calendar('China.SSE')
data = DataFrame()
field = ['ticker','secShortName','tradeDate','preClosePrice','closePrice','turnoverValue']
#时间轴(开始时间)
time = ['20150630','20140630','20130630','20120630','20110630', '20141130', '20131130', '20121130', '20111130', '20101130']
#保存各个时间段的数据
Data_time = {}
#保存各个时间段的股票名字
tk_nm_dic ={}
for s in time :
Data_time[s] = DataFrame()
data_temp = DataAPI.MktEqudAdjGet( ticker = universe , field =field , beginDate = s , endDate = cal.advanceDate(s,'3M', BizDayConvention.Following).strftime('%Y%m%d'))
data_temp['marketValue'] = DataAPI.MktEqudGet(ticker = universe ,field ='marketValue' , beginDate = s , endDate = cal.advanceDate(s,'3M', BizDayConvention.Following).strftime('%Y%m%d'))
Data_time[s] = pd.concat([Data_time[s],data_temp])
tk_nm_dic[s] = dict(zip(Data_time[s]['ticker'],Data_time[s]['secShortName'])) # 获得个股ticker与名称的对应字典
for s in Data_time.values() :
s['tradeDate'] = pd.to_datetime(s['tradeDate']) # 将tradeDate这一列的格式由string改为datetime
s['increase'] = s['closePrice']/s['preClosePrice'] # 获得个股每天的收益
```
```py
#股票数据统计
Stock_Data = {}
for s in Data_time.keys() :
Stock_dict = {'ticker':[],'income':[],'turnoverValue':[] ,'marketValue' :[]}
# 获得每个时间段的Data计算个股的收益和平均市值
for tk,sub_info in Data_time[s].groupby('ticker') :
income = sub_info['increase'].prod()-1 # 获得在这段时间内该股的涨幅
mkt_value = sub_info['marketValue'].sum()/len(sub_info)
turnoverValue_avg = sub_info['turnoverValue'].sum()/len(sub_info)
Stock_dict['ticker'].append(tk)
Stock_dict['income'].append(income)
Stock_dict['marketValue'].append(mkt_value)
Stock_dict['turnoverValue'].append(turnoverValue_avg)
# 返回时间为Key的个股数据
Stock_Data[s] = pd.DataFrame(Stock_dict)
```
```py
#行业数据统计
Output_dicy = {}
Output_dicy['industry'] = []
Output_dicy['Num'] = []
Output_dicy['bigstk_Summer15'] = []
Output_dicy['bigstk_Winter14'] = []
for ind,tks in Ind_tks_dic.items() :
for table in Stock_Data.keys() :
if not table in Output_dicy.keys() :
Output_dicy[table] = []
sub_Industry = Stock_Data[table][Stock_Data[table]['ticker'].isin(tks)]
# 行业指数收益
rtn_Industry = (sub_Industry['income']*sub_Industry['marketValue']).sum()/sub_Industry['marketValue'].sum()
# 成交量
bigstk = sub_Industry.sort(columns='turnoverValue',ascending=False)['ticker'][0:3].tolist()
Output_dicy[table].append(rtn_Industry)
# 计算成交量
if table == '20150630' :
Output_dicy['bigstk_Summer15'].append(map(lambda x:tk_nm_dic['20150630'][x],bigstk))
if table == '20141130' :
Output_dicy['bigstk_Winter14'].append(map(lambda x:tk_nm_dic['20141130'][x],bigstk))
#最新行业成分数量
Output_dicy['Num'].append(len(sub_Industry))
Output_dicy['industry'].append(ind)
# 计算上证指数同期涨幅
for s in time :
temp = DataAPI.MktIdxdGet(ticker= '000001' , beginDate = s , endDate = cal.advanceDate(s,'3M', BizDayConvention.Following).strftime('%Y%m%d'),field=u"secShortName,closeIndex",pandas="1")
SH_rtn = temp['closeIndex'].values[-1] / temp['closeIndex'].values[0] - 1
Output_dicy[s].append(SH_rtn)
Output_dicy['Num'].append(1)
Output_dicy['industry'].append('上证指数')
Output_dicy['bigstk_Winter14'].append(None)
Output_dicy['bigstk_Summer15'].append(None)
Output_table = pd.DataFrame(Output_dicy)
```
```py
# 夏天统计
Out_put = Output_table.loc[:,['industry','Num','20110630','20120630','20130630','20140630','20150630','bigstk_Summer15']]
Out_put.columns = [u'行业名称',u'该行业成分股数目(15年)',u'2011年夏天收益',u'2012年夏天收益',u'2013年夏天收益',u'2014年夏天收益',u'2015年夏天收益',u'2015年夏天成交量前三']
# print u'一共有%d个申万二级行业'%len(Out_put),u',1年内行业涨幅'
Out_put.sort(u'2015年夏天收益' , ascending = False)
```
| | 行业名称 | 该行业成分股数目(15年) | 2011年夏天收益 | 2012年夏天收益 | 2013年夏天收益 | 2014年夏天收益 | 2015年夏天收益 | 2015年夏天成交量前三 |
| --- | --- |
| 0 | 电力 | 65 | -0.164885 | -0.080913 | 0.047399 | 0.311616 | -0.277611 | [中国核电, 国电电力, 梅雁吉祥] |
| 2 | 上证指数 | 1 | -0.145853 | -0.068142 | 0.089925 | 0.154049 | -0.286270 | None |
| 1 | 煤炭开采 | 44 | -0.095143 | -0.029945 | 0.070714 | 0.244293 | -0.341531 | [国投新集, 中国神华, 中煤能源] |
14年夏天电力还不错。。。
```py
# 冬天统计
Out_put = Output_table.loc[:,['industry','Num','20101130','20111130','20121130','20131130','20141130','bigstk_Winter14']]
Out_put.columns = [u'行业名称',u'该行业成分股数目(15年)',u'2010年冬天收益',u'2011年冬天收益',u'2012年冬天收益',u'2013年冬天收益',u'2014年冬天收益',u'2014年冬天成交量前三']
# print u'一共有%d个申万二级行业'%len(Out_put),u',1年内行业涨幅'
Out_put.sort(u'2014年冬天收益' , ascending = False)
```
| | 行业名称 | 该行业成分股数目(15年) | 2010年冬天收益 | 2011年冬天收益 | 2012年冬天收益 | 2013年冬天收益 | 2014年冬天收益 | 2014年冬天成交量前三 |
| --- | --- |
| 2 | 上证指数 | 1 | 0.030095 | 0.040744 | 0.194673 | -0.068438 | 0.244808 | None |
| 0 | 电力 | 65 | -0.018729 | -0.003542 | 0.161399 | -0.043282 | 0.210642 | [国电电力, 国投电力, 长江电力] |
| 1 | 煤炭开采 | 44 | 0.059724 | 0.017702 | 0.157182 | -0.209695 | 0.140903 | [中国神华, 国投新集, 西山煤电] |
冬买煤、冬买煤、冬买煤,呵呵!赶紧买...保证亏不死! O.....~
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究