# 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
> 来源:https://uqer.io/community/share/5670da3c228e5b8d81f00a87
本篇结合wealthfront投资白皮书,详细介绍并开源了wealthfront的资产配置方法
目前国内也出来很多创业团队做这块,其实没有太多神秘的黑科技,优矿瞬间搞定
结合我国实情,在本篇中给出一个中国版的wealthfront实例
具体wealthfront投资白皮书,参见链接 https://research.wealthfront.com/whitepapers/investment-methodology/
wealthfront介绍
+ wealthfront是美国知名的在线资产管理平台,目前其管理的资产总额已超过25亿美元https://www.wealthfront.com/
+ 以ETF为标的,资产配置为理念,根据客户不同的风险偏好构建不同的投资组合
+ 实时跟踪用户组合持仓,给出健康评分,同时根据市场情况和客户风险偏好变化帮用户调整到最优持仓
投资理念
+ 价值投资(长线投资):享受经济增长带来的资本增值,并非每个人都有时间看盘,短线投资太累不靠谱
+ 被动投资:国内外众多研究表明,长期来看,主动型投资的收益不一定跑得过被动型投资,同时被动投资更容易分散风险
+ 资产配置:不要把鸡蛋放在同一个篮子里,做好资产配置,分散掉没有价值非系统性风险
下面,将按照完整的投资步骤详细描述(主要包括选取资产大类,相关性矩阵,构建有效前沿,资产配置方法,组合监控和动态调仓)
并结合中国实情,以具体的例子展开上述过程
## 1 选取资产大类
+ 所选取的资产大类要尽可能涵盖整个市场,而且不同收益特征的都要包括进来,大致可以分为:权益类,债券类和货币类
+ 对于每一大类资产,结合我国实情又可以细分很多小类,小类数量不在于多,在于彼此间能够有效地分散掉非系统性风险,使efficient frontier最优
+ 最后,选取出来七类资产:国内股市(大盘股、中盘股、小盘股)、国外股市(美股)、国内债券(国债、企业债)、货币基金
+ 由于是被动投资,考虑历史数据长短问题,上述七类资产分别以沪深300、中证500、创业板、标普500、上证国债、上证企业债、博时现金收益A为代表
不失一般性,下面以过去三年的历史数据计算标的的相关指标,需要特别关注的是相关性系数矩阵,因为需要寻找的是相关性不强甚至是负相关的标的
```py
# 数据准备
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from matplotlib import pyplot as plt
startdate = '20120101'
enddate = '20150101'
secIDs = ['000300.ZICN','000905.ZICN','399006.ZICN','SPX.ZIUS','000012.ZICN','000013.ZICN','050003.OFCN'] # 七类资产的secID
rtns = DataFrame()
for i in range(len(secIDs)-1):
cp = DataAPI.JY.MktIdxdJYGet(indexID=secIDs[i],startDate=startdate,endDate=enddate,field=u"secShortName,tradeDate,closeIndex",pandas="1")
cp.sort(columns = 'tradeDate', inplace = True)
cp.columns = ['secShortName','tradeDate','return']
cp['return'][1:] = 1.0 * cp['return'][1:].values / cp['return'][:-1].values - 1
cp['return'][:1] = 0
rtns = pd.concat([rtns,cp],axis = 0) # dataframe连接操作
cp = DataAPI.JY.FundNavJYGet(secID=secIDs[len(secIDs)-1],beginDate=startdate,endDate=enddate,field=u"secShortName,endDate,dailyProfit",pandas="1")
cp.columns = ['secShortName','tradeDate','return']
cp['return'] = cp['return'].values / 10000
rtns = pd.concat([rtns,cp],axis = 0)
rtn_table = pd.crosstab(rtns['tradeDate'],rtns['secShortName'], values = rtns['return'], aggfunc = sum) # 一维表变为二维表
rtn_table = rtn_table[[6,2,3,5,1,0,4]]
rtn_table.fillna(0, inplace = True) # 将NaN置换为0
```
运行上述代码,便可以看到整理好的日度收益数据如下所示
```py
rtn_table.head(20)
```
| secShortName | 沪深300 | 创业板指 | 博时现金A | 标普500 | 企债指数 | 中证500 | 国债指数 |
| --- | --- |
| tradeDate | | | | | | | |
| 2012-01-03 00:00:00 | 0.000000 | 0.000000 | 0.000391 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-04 00:00:00 | 0.000000 | 0.000000 | 0.000139 | 0.000188 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-05 00:00:00 | -0.009727 | -0.056851 | 0.000121 | 0.002944 | -0.000607 | -0.036921 | 0.000076 |
| 2012-01-06 00:00:00 | 0.006242 | 0.003164 | 0.000120 | -0.002537 | 0.000067 | 0.004287 | 0.000152 |
| 2012-01-08 00:00:00 | 0.000000 | 0.000000 | 0.000236 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-09 00:00:00 | 0.034039 | 0.034977 | 0.000122 | 0.002262 | 0.000405 | 0.040599 | 0.000685 |
| 2012-01-10 00:00:00 | 0.033261 | 0.034704 | 0.000126 | 0.008886 | 0.000067 | 0.041237 | 0.000152 |
| 2012-01-11 00:00:00 | -0.004797 | 0.002080 | 0.000128 | 0.000310 | 0.000202 | 0.000404 | 0.000000 |
| 2012-01-12 00:00:00 | -0.000160 | -0.011213 | 0.000128 | 0.002337 | 0.000674 | -0.000278 | 0.000076 |
| 2012-01-13 00:00:00 | -0.016791 | -0.061714 | 0.000130 | -0.004948 | 0.000067 | -0.033508 | 0.000152 |
| 2012-01-15 00:00:00 | 0.000000 | 0.000000 | 0.000259 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-16 00:00:00 | -0.020331 | -0.048298 | 0.000127 | 0.000000 | 0.000000 | -0.031895 | 0.000456 |
| 2012-01-17 00:00:00 | 0.049006 | 0.045401 | 0.000119 | 0.003553 | -0.000067 | 0.055683 | -0.000152 |
| 2012-01-18 00:00:00 | -0.015610 | -0.057010 | 0.000116 | 0.011108 | -0.000135 | -0.020282 | 0.000152 |
| 2012-01-19 00:00:00 | 0.019057 | 0.012626 | 0.000125 | 0.004939 | 0.000404 | 0.010167 | -0.000076 |
| 2012-01-20 00:00:00 | 0.014479 | 0.021460 | 0.000128 | 0.000669 | 0.001144 | 0.013706 | 0.000152 |
| 2012-01-23 00:00:00 | 0.000000 | 0.000000 | 0.000000 | 0.000471 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-24 00:00:00 | 0.000000 | 0.000000 | 0.000000 | -0.001026 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-25 00:00:00 | 0.000000 | 0.000000 | 0.000000 | 0.008679 | 0.000000 | 0.000000 | 0.000000 |
| 2012-01-26 00:00:00 | 0.000000 | 0.000000 | 0.000000 | -0.005754 | 0.000000 | 0.000000 | 0.000000 |
先随便计算一下指标,年化收益率,年化标准差
```py
rtn_table.mean() * 250
secShortName
沪深300 0.132476
创业板指 0.229035
博时现金A 0.034695
标普500 0.134380
企债指数 0.053748
中证500 0.157495
国债指数 0.027760
dtype: float64
```
```py
rtn_table.std() * np.sqrt(250)
secShortName
沪深300 0.181934
创业板指 0.249659
博时现金A 0.001477
标普500 0.105316
企债指数 0.006232
中证500 0.197669
国债指数 0.006012
dtype: float64
```
接下来计算我们关心的相关系数矩阵
```py
rtn_table.corr()
```
| secShortName | 沪深300 | 创业板指 | 博时现金A | 标普500 | 企债指数 | 中证500 | 国债指数 |
| --- | --- |
| secShortName | | | | | | | |
| 沪深300 | 1.000000 | 0.570628 | 0.002318 | 0.063094 | 0.074392 | 0.835496 | -0.024434 |
| 创业板指 | 0.570628 | 1.000000 | -0.018372 | 0.022396 | 0.118028 | 0.834778 | -0.046782 |
| 博时现金A | 0.002318 | -0.018372 | 1.000000 | -0.013068 | -0.090991 | -0.005413 | -0.017517 |
| 标普500 | 0.063094 | 0.022396 | -0.013068 | 1.000000 | 0.035720 | 0.043377 | 0.001724 |
| 企债指数 | 0.074392 | 0.118028 | -0.090991 | 0.035720 | 1.000000 | 0.129318 | 0.209755 |
| 中证500 | 0.835496 | 0.834778 | -0.005413 | 0.043377 | 0.129318 | 1.000000 | -0.007354 |
| 国债指数 | -0.024434 | -0.046782 | -0.017517 | 0.001724 | 0.209755 | -0.007354 | 1.000000 |
从上面可以看到:
+ 收益相对稳定的债券和货币与其他类的资产相关性都比较低,一方面通过配置可以分散非系统性风险,另一方面在市场不好时可以提供相对稳健的收益
+ 标普和国内股市相关性弱,这在进行权益类配置时特别有效,比如在12-14年我国股市表现不佳时,标普500却走出了一波慢牛
接下来,就来对比绘制efficient frontier,从实际中直观感知资产多元化带来的风险分散效果
+ 构建两个组合作为对比,组合一仅包含沪深300、中证500、创业板、国债、货币,组合二则包含了组合一、标普500、企业债
+ 绘制effiecient frontier用到了凸优化包cvxopt,关于cvxopt的用法详细介绍,参见。。。。。
+ 在构建efficient frontier中,预期收益采取市场中性原则,用过去三年的平均收益
```py
from cvxopt import matrix, solvers
portfolio1 = [0,1,2,4,6]
portfolio2 = range(7)
cov_mat = rtn_table.cov() * 250 # 协方差矩阵
exp_rtn = rtn_table.mean() * 250 # 标的预期收益
def cal_efficient_frontier(portfolio):
#简单的容错处理
if len(portfolio) <= 2 or len(portfolio) > 7:
raise Exception('portfolio必须为长度大于2小于7的list!')
# 数据准备
cov_mat1 = cov_mat.iloc[portfolio][portfolio]
exp_rtn1 = exp_rtn.iloc[portfolio]
max_rtn = max(exp_rtn1)
min_rtn = min(exp_rtn1)
risks = []
returns = []
# 均匀选取20个点来作图
for level_rtn in np.linspace(min_rtn, max_rtn, 20):
sec_num = len(portfolio)
P = 2*matrix(cov_mat1.values)
q = matrix(np.zeros(sec_num))
G = matrix(np.diag(-1 * np.ones(sec_num)))
h = matrix(0.0, (sec_num,1))
A = matrix(np.matrix([np.ones(sec_num),exp_rtn1.values]))
b = matrix([1.0,level_rtn])
solvers.options['show_progress'] = False
sol = solvers.qp(P,q, G, h, A, b)
risks.append(sol['primal objective'])
returns.append(level_rtn)
return np.sqrt(risks), returns
# 计算画图数据
risk1, return1 = cal_efficient_frontier(portfolio1)
risk2, return2 = cal_efficient_frontier(portfolio2)
```
在上述准备好数据之后,接下来就构建组合一(沪深300、中证500、创业板、国债、货币)和组合二(组合一 + 标普500、企业债)的efficient frontier
```py
fig = plt.figure(figsize = (14,8))
ax1 = fig.add_subplot(111)
ax1.plot(risk1,return1)
ax1.plot(risk2,return2)
ax1.set_title('Efficient Frontier', fontsize = 14)
ax1.set_xlabel('Standard Deviation', fontsize = 12)
ax1.set_ylabel('Expected Return', fontsize = 12)
ax1.tick_params(labelsize = 12)
ax1.legend(['portfolio1','portfolio2'], loc = 'best', fontsize = 14)
<matplotlib.legend.Legend at 0x5e10990>
```
![](https://box.kancloud.cn/2016-07-30_579cb734f0c60.png)
从上图可以很直观地看到:
+ 组合一所包含的标的较少,相关性也较高,所以efficient frontier基本为一条直线,分散风险作用不明显
+ 组合二引入了和其他资产相关性都不高的标普500,使得efficient frontier得到了很大程度的优化
+ 由此也可以知晓,当加入某个标的之后能够使得efficient frontier得到改进的话,那么加入该资产到组合中是非常有必要的
接下来,给定预期收益,得到最优权重
+ 如上分析,在得到最优的efficient frontier之后(本例中为组合二),便可以在资产池中进行资产配置
+ 假定某投资者的风险厌恶系数为3(系数越大,表明越厌恶风险,投资更保守),那么就可以借鉴均方差优化来计算自由的资产配置权重
附:均值方差优化简介
+ 均值方差模型可以理解成是一个效用函数的最大化,目标效用 = 预期收益带来的正效用 - 承担风险带来的负效用,用公式表示如下:
![](https://box.kancloud.cn/2016-07-30_579cb73512975.jpg)
上式中:u为资产的预期收益率,`w`为资产权重,`λ`为投资者风险厌恶系数,`Σ`为方差协方差矩阵
+ 一般情况下,通过给定`u`、`λ`、`Σ`,就可以计算最优的资产配置权重w
+ 上式表明,我们仅考虑long only时的情况
```py
risk_aversion = 3
P = risk_aversion * matrix(cov_mat.values)
q = -1 * matrix(exp_rtn.values)
G = matrix(np.vstack((np.diag(np.ones(len(exp_rtn))),np.diag(-np.ones(len(exp_rtn))))))
h = matrix(np.array([np.ones(len(exp_rtn)),np.zeros(len(exp_rtn))]).reshape(len(exp_rtn)*2,1))
A = matrix(np.ones(len(exp_rtn)),(1,len(exp_rtn)))
b = matrix([1.0])
solvers.options['show_progress'] = False
sol = solvers.qp(P,q, G, h, A, b)
DataFrame(index=exp_rtn.index,data = np.round(sol['x'],2), columns = ['weight']) # 权重精确到小数点后两位
```
| weight |
| --- | --- |
| secShortName | |
| 沪深300 | 0.00 |
| 创业板指 | 0.58 |
| 博时现金A | 0.00 |
| 标普500 | 0.42 |
| 企债指数 | 0.00 |
| 中证500 | 0.00 |
| 国债指数 | 0.00 |
+ 如上所示,在我们的实例中,最优权重配置为58%的创业板,42%的标普500,只配置了两个标的,而且都是权益类的,相对风险较大,这主要是因为风险厌恶系数给定值较小的缘故
+ 对于如上配置过程只是一个范例,除此之外,我们还可以定义很多个性化的东西,比如:wealthfront为了保证配置的均匀性,要求每一大类的配置比例都不得超过35%,这些个性化的条件,只用简单的加在优化函数的限制条件里就实现了,读者可以自行实践
最后,组合监控和动态调仓(rebalance)
承接上文,在构建好组合之后,
以上是对wealthfront投资方法的整体介绍,同时详细介绍了我国版的实例,后期优矿可以让大家自己产生这样的策略在优矿上跑,比其他创业产品透明的多喔。
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究