企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# 羊驼策略 ## 策略实现 羊驼做为上古十大神兽之一, 选股祥瑞, 名号响亮, 本策略由一个羊驼类负责每周生成买入卖出信号, 验证羊驼是否名实相符. + 投资域 :沪深300成分股 + 业绩基准 :沪深300指数 + 调仓频率 :5个交易日 + 买入卖出信号 :初始时任意买10只羊驼,每次调仓时,剔除收益最差的一只羊驼,再任意买一只羊驼. + 回测周期 :2014年1月1日至2015年5月5日 ![](https://box.kancloud.cn/2016-07-31_579d7a0229b1d.jpg) ```py import numpy as np import operator from datetime import datetime start = datetime(2010, 1, 1) end = datetime(2015, 5, 5) benchmark = 'HS300' universe = set_universe('HS300') capital_base = 100000 longest_history = 10 refresh_rate = 5 def initialize(account): account.stocks_num = 10 def handle_data(account): hist_prices = account.get_attribute_history('closePrice', 5) yangtuos = list(YangTuo(set(account.universe)-set(account.valid_secpos.keys()), account.stocks_num)) cash = account.cash if account.stocks_num == 1: hist_returns = {} for stock in account.valid_secpos: hist_returns[stock] = hist_prices[stock][-1]/hist_prices[stock][0] sorted_returns = sorted(hist_returns.items(), key=operator.itemgetter(1)) sell_stock = sorted_returns[0][0] cash = account.cash + hist_prices[sell_stock][-1]*account.valid_secpos.get(sell_stock) order_to(sell_stock, 0) else: account.stocks_num = 1 for stock in yangtuos: order(stock, cash/len(yangtuos)/hist_prices[stock][-1]) class YangTuo: def __init__(self, caoyuan=[], count=10): self.count = count self.i = 0 self.caoyuan = list(caoyuan) def __iter__(self): return self def next(self): if self.i < self.count: self.i += 1 return self.caoyuan.pop(np.random.randint(len(self.caoyuan))) else: raise StopIteration() ``` ![](https://box.kancloud.cn/2016-07-30_579cbdb17ac6b.jpg) 也许你会说,这只是运气好,并不能说明羊驼的厉害啊!好,接下来我们运行100次,看看羊驼的威力. ```py start = datetime(2010, 1, 1) end = datetime(2015, 5, 5) benchmark = 'HS300' universe = set_universe('HS300') capital_base = 100000 sim_params = quartz.sim_condition.env.SimulationParameters(start, end, benchmark, universe, capital_base) idxmap_all, data_all = quartz.sim_condition.data_generator.get_daily_data(sim_params) ``` ```py import numpy as np import operator longest_history = 10 refresh_rate = 5 def initialize(account): account.stocks_num = 10 def handle_data(account): hist_prices = account.get_attribute_history('closePrice', 5) yangtuos = list(YangTuo(set(account.universe)-set(account.valid_secpos.keys()), account.stocks_num)) cash = account.cash if account.stocks_num == 1: hist_returns = {} for stock in account.valid_secpos: hist_returns[stock] = hist_prices[stock][-1]/hist_prices[stock][0] sorted_returns = sorted(hist_returns.items(), key=operator.itemgetter(1)) sell_stock = sorted_returns[0][0] cash = account.cash + hist_prices[sell_stock][-1]*account.valid_secpos.get(sell_stock) order_to(sell_stock, 0) else: account.stocks_num = 1 for stock in yangtuos: order(stock, cash/len(yangtuos)/hist_prices[stock][-1]) class YangTuo: def __init__(self, caoyuan=[], count=10): self.count = count self.i = 0 self.caoyuan = list(caoyuan) def __iter__(self): return self def next(self): if self.i < self.count: self.i += 1 return self.caoyuan.pop(np.random.randint(len(self.caoyuan))) else: raise StopIteration() strategy = quartz.sim_condition.strategy.TradingStrategy(initialize, handle_data) perfs = [] for i in xrange(100): bt, acct = quartz.quick_backtest(sim_params, strategy, idxmap_all, data_all, refresh_rate = refresh_rate, longest_history=longest_history) perf = quartz.perf_parse(bt, acct) perfs.append(perf) ``` ```py from matplotlib import pylab import seaborn x = sorted([p['annualized_return']-p['benchmark_annualized_return'] for p in perfs]) pylab.plot(x) pylab.plot([0]*len(x)) [<matplotlib.lines.Line2D at 0x7702a10>] ``` ![](https://box.kancloud.cn/2016-07-30_579cbdb192746.png) 100%的胜率! 大家闭着眼睛,跟着羊驼买就行了! 接下来的工作: 由于指数并没有分红等概念, 直接拿HS300指数做benchmark, 对HS300并不公平. 所以接下来考虑把benchmark换成某只指数基金, 再做对比. ![](https://box.kancloud.cn/2016-07-31_579d7a0258441.jpg)