多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版 > 来源:https://uqer.io/community/share/568e6f54228e5b18e5ba296e 从社区李大大以前的帖子,稍作修改,适合现在的uqer版本,感谢李大大的无私分享! 原帖地址: https://uqer.io/community/share/5541d8a4f9f06c1c3d687fef 在本篇中,我们将使用流通股份的集中程度作为指标,为大家开发如何机智的抢筹码策略! 股市里面总是有这样的一种说法: 大股东总是会快小散一步,悄悄地进村,放枪的不要。大股东会在建仓期吸收世面上的廉价筹码,然后放出利好,逢高出货。所以大股东的建仓期,正是小散们入场分汤的好时机! ## 1. 数据准备 好了,说了这些原理,到底灵不灵呢?来,一试便知!这里我们首先要定义什么叫大股东呢?这里我们借助中诚信的数据,获取前十大流通股东的持股比例: 数据API: `CCXE.EquMainshFCCXEGet` 获取财报中十大流通股股东的持股比例(本API需要在数据商城购买) 下面的语句查询`600000.XSHG`浦发银行在2014年9月30日到2014年12月31日的十大流通股股东持股情况: ```py import datetime as dt from CAL.PyCAL import * data = DataAPI.CCXE.EquMainshFCCXEGet('600000.XSHG', endDateStart='20140930', endDateEnd='20141231') data.head() ``` | | secID | ticker | exchangeCD | secShortName | secShortNameEn | endDate | shNum | shRank | shName | holdVol | holdPct | shareCharType | | --- | --- | | 0 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 1 | 1 | 上海国际集团有限公司 | 3157513917 | 16.93 | 101 | | 1 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 2 | 2 | 上海国际信托有限公司 | 975923794 | 5.23 | 101 | | 2 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 3 | 3 | 上海国鑫投资发展有限公司 | 377101999 | 2.02 | 101 | | 3 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 4 | 4 | 百联集团有限公司 | 190083517 | 1.02 | 101 | | 4 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 5 | 5 | 雅戈尔集团股份有限公司 | 162000000 | 0.87 | 101 | 我们按照报表日进行合并,并计算前十大流通股股东持股总比例: ```py data.groupby('endDate').sum() ``` 可以看到,2014年年报中流通股集中度是下降的,相对于上一个季报,持股总比例从29.76%降到了29.25%。看来他的大股东没啥动静,小散们先按兵不动! ## 2. 策略思路 有一句俗话:不要在一棵树上吊死!小散们可以“海选PK”,择优录取!我们以上证50成分股为例,挑选出满足以下条件的股票: + 2015年一季度季报中10大流通股股东持股比例相对于去年年报上升10% 这就是我们认定的大股东吸筹码的标志: ```py from quartz.api import set_universe import datetime as dt universe = set_universe('SH50') for stock in universe: try: data = DataAPI.CCXE.EquMainshFCCXEGet(stock, endDateStart='20141231', endDateEnd='20150331') except: continue res = data.groupby('endDate').sum()[-2:] if len(res.index) == 2 and res.index[1] == '2015-03-31 00:00:00': chg = res['holdPct'].values[1] / res['holdPct'].values[0] - 1.0 if chg > 0.1: print '%s: %.4f' % (stock, chg) ``` 选出来有三只股票满足:`601169.XSHG`, `600887.XSHG`, `600703.XSHG` 下面的股价走势图来看,这样的股票总体还是上升的。但是按照这样投钱真的靠谱吗? ```py import pandas as pd stock1 = DataAPI.MktEqudAdjGet(secID=['601169.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate']) stock2 = DataAPI.MktEqudAdjGet(secID=['600887.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate']) stock3 = DataAPI.MktEqudAdjGet(secID=['600703.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate']) ``` ```py import seaborn as sns sns.set_style('white') total = pd.DataFrame({'601169.XSHG':stock1.closePrice.values, '600887.XSHG':stock2.closePrice.values, '600703.XSHG':stock3.closePrice.values}) total.index = stock1.tradeDate.apply(lambda x: dt.datetime.strptime(x, '%Y-%m-%d')) total.plot(subplots=True, figsize=(12,8)) array([<matplotlib.axes.AxesSubplot object at 0x5543d10>, <matplotlib.axes.AxesSubplot object at 0x5572850>, <matplotlib.axes.AxesSubplot object at 0x56a62d0>], dtype=object) ``` ![](https://box.kancloud.cn/2016-07-30_579cbac17f300.png) ## 3. 完整策略 我们来吧上面的想法系统化,来看这个策略效率: + 投资域 :上证50成分股 + 业绩基准 :上证50指数 + 调仓频率 :3个月 + 调仓日期 :每年的2月28日,5月31日,8月30日,11月30日,遇到节假日的话向后顺延 + 开仓信号 :十大流通股股东持股比例集中度上升10% + 清仓信号 :每个调仓日前一个工作日,清空当前仓位 + 买入方式 :等比例买入 + 回测周期 :2006年1月1日至2015年4月28日 这里的调仓日期的设置,是满足每期报表结束日后的两个月,这样我们有比较大的把握,可以确实拿到当前的报表数据。 ```py import datetime as dt start = '2006-01-01' # 回测起始时间 end = '2012-12-31' # 回测结束时间 benchmark = 'SH50' # 策略参考标准 universe = set_universe('SH50') # 证券池,支持股票和基金 capital_base = 100000 # 起始资金 longest_history = 1 # handle_data 函数中可以使用的历史数据最长窗口长度 refresh_rate = 1 # 调仓频率,即每 refresh_rate 个交易日执行一次 handle_data() 函数 def initialize(account): # 初始化虚拟账户状态 account.reportingPair = [('0930', '1231'), ('1231', '0331'), ('0331', '0630'), ('0630', '0930')] def handle_data(account): # 每个交易日的买入卖出指令 hist = account.get_history(longest_history) today = account.current_date year = today.year rebalance_dates = [dt.datetime(year, 2, 28), dt.datetime(year, 5,31), dt.datetime(year, 8, 30), dt.datetime(year, 11,30)] cal = Calendar('China.SSE') rebalance_dates = [cal.adjustDate(d, BizDayConvention.Following) for d in rebalance_dates] rebalanceFlag = False period = -1 for i, d in enumerate(rebalance_dates): # 判断是否是调仓日 if today == d.toDateTime(): rebalanceFlag = True period = i break # 调仓日前一个交易日,清空所有的仓位 elif today == cal.advanceDate(d, '-1B').toDateTime(): for stock in account.valid_secpos: order_to(stock,0) if rebalanceFlag: if period == 0: year -= 1 # 确定当前调仓日对应需要查询的报表日期 if account.reportingPair[period][0] < account.reportingPair[period][1]: endDateStart = str(year) + account.reportingPair[period][0] else: endDateStart = str(year-1) + account.reportingPair[period][0] endDateEnd = str(year) + account.reportingPair[period][1] buyList = [] # 确定哪些股票满足“筹码”集中要求 for stock in account.universe: try: data = DataAPI.CCXE.EquMainshFCCXEGet(stock, endDateStart=endDateStart, endDateEnd=endDateEnd) except: continue res = data.groupby('endDate').sum()[-2:] tmp = account.reportingPair[period][1] if len(res.index) == 2 and res.index[1] == str(year) + '-' + tmp[:2] + '-' + tmp[2:]+ ' 00:00:00': chg = res['holdPct'].values[1] / res['holdPct'].values[0] - 1.0 if chg > 0.1: buyList.append(stock) print u"%s 买入 : %s" % (today, buyList) # 等权重买入 if len(buyList) != 0: singleCash = account.cash / len(buyList) for stock in buyList: approximationAmount = int(singleCash / hist[stock]['closePrice'][-1]/100.0) * 100 order(stock, approximationAmount) ``` ![](https://box.kancloud.cn/2016-07-30_579cbac19545d.jpg) ``` 2006-02-28 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600016.XSHG', '600104.XSHG', '600010.XSHG', '600518.XSHG', '600030.XSHG', '600150.XSHG'] 2006-05-31 00:00:00 买入 : ['600036.XSHG', '600111.XSHG', '600104.XSHG', '600010.XSHG', '600030.XSHG'] 2006-08-30 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600000.XSHG', '600104.XSHG', '600637.XSHG', '600837.XSHG', '600150.XSHG'] 2006-11-30 00:00:00 买入 : ['600050.XSHG', '600795.XSHG', '600036.XSHG', '600000.XSHG', '600111.XSHG', '600519.XSHG', '600016.XSHG', '600518.XSHG', '601988.XSHG', '600030.XSHG'] 2007-02-28 00:00:00 买入 : ['600000.XSHG', '600111.XSHG', '601006.XSHG', '600048.XSHG', '600015.XSHG', '600518.XSHG', '600887.XSHG', '600150.XSHG'] 2007-05-31 00:00:00 买入 : ['600795.XSHG', '600111.XSHG', '601166.XSHG', '600104.XSHG', '600015.XSHG', '600637.XSHG', '600837.XSHG'] 2007-08-30 00:00:00 买入 : ['600000.XSHG', '600519.XSHG', '601166.XSHG', '600015.XSHG', '600109.XSHG', '600887.XSHG', '601318.XSHG'] 2007-11-30 00:00:00 买入 : ['600050.XSHG', '600795.XSHG', '600111.XSHG', '601006.XSHG', '600048.XSHG', '600104.XSHG', '600015.XSHG', '600837.XSHG', '601988.XSHG', '600030.XSHG'] 2008-02-28 00:00:00 买入 : ['601328.XSHG', '600050.XSHG', '600795.XSHG', '600000.XSHG', '600018.XSHG', '600016.XSHG', '601006.XSHG', '600104.XSHG', '600028.XSHG', '600518.XSHG', '600837.XSHG', '601169.XSHG', '601988.XSHG', '601398.XSHG'] 2008-06-02 00:00:00 买入 : ['601006.XSHG', '601166.XSHG', '600010.XSHG', '600518.XSHG', '601318.XSHG'] 2008-09-01 00:00:00 买入 : ['601328.XSHG', '600050.XSHG', '601601.XSHG', '600036.XSHG', '600000.XSHG', '600519.XSHG', '600016.XSHG', '601998.XSHG', '600015.XSHG', '600637.XSHG', '600150.XSHG'] 2008-12-01 00:00:00 买入 : ['601601.XSHG', '600795.XSHG', '600104.XSHG', '600837.XSHG', '601169.XSHG', '600030.XSHG'] 2009-03-02 00:00:00 买入 : ['601601.XSHG', '601390.XSHG', '600104.XSHG', '600028.XSHG', '600518.XSHG', '600887.XSHG', '600837.XSHG', '601988.XSHG'] 2009-06-01 00:00:00 买入 : ['600893.XSHG', '600036.XSHG', '600111.XSHG', '600585.XSHG', '600048.XSHG', '600109.XSHG', '600887.XSHG', '601988.XSHG'] 2009-08-31 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600000.XSHG', '600111.XSHG', '600519.XSHG', '600015.XSHG', '600010.XSHG', '600887.XSHG', '601766.XSHG', '601398.XSHG', '600150.XSHG'] 2009-11-30 00:00:00 买入 : ['600795.XSHG', '600893.XSHG', '600016.XSHG', '601006.XSHG', '600048.XSHG', '600887.XSHG', '601988.XSHG'] 2010-03-01 00:00:00 买入 : ['601601.XSHG', '600893.XSHG', '600018.XSHG', '600016.XSHG', '601668.XSHG', '600585.XSHG', '601998.XSHG', '600104.XSHG', '600028.XSHG', '601398.XSHG'] 2010-05-31 00:00:00 买入 : ['600111.XSHG', '600999.XSHG', '601628.XSHG', '601318.XSHG'] 2010-08-30 00:00:00 买入 : ['601328.XSHG', '600893.XSHG', '600111.XSHG', '600585.XSHG', '601998.XSHG', '601688.XSHG', '600999.XSHG', '600109.XSHG', '601989.XSHG', '600837.XSHG'] 2010-11-30 00:00:00 买入 : ['600010.XSHG', '601989.XSHG', '601169.XSHG', '600150.XSHG'] 2011-02-28 00:00:00 买入 : ['601601.XSHG', '601857.XSHG', '601390.XSHG', '601288.XSHG', '601668.XSHG', '601088.XSHG', '600999.XSHG', '601989.XSHG', '600837.XSHG'] 2011-05-31 00:00:00 买入 : ['600893.XSHG', '601668.XSHG', '601688.XSHG', '600010.XSHG', '600109.XSHG'] 2011-08-30 00:00:00 买入 : ['600010.XSHG', '600887.XSHG'] 2011-11-30 00:00:00 买入 : ['601288.XSHG', '601818.XSHG', '601766.XSHG'] 2012-02-28 00:00:00 买入 : ['600893.XSHG', '600015.XSHG', '600030.XSHG', '601669.XSHG', '601901.XSHG'] 2012-05-31 00:00:00 买入 : ['601336.XSHG', '601989.XSHG', '601669.XSHG'] 2012-08-30 00:00:00 买入 : ['601336.XSHG', '600837.XSHG', '601901.XSHG'] 2012-11-30 00:00:00 买入 : ['601668.XSHG', '601901.XSHG'] ```