企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析 > 来源:https://uqer.io/community/share/55e69497f9f06c1eaa81f9d4 ## 一、阿隆指标(Aroon)简介 阿隆指标(Aroon)是由图莎尔·钱德(Tushar Chande)1995 年发明的,它通过计算自价格达到近期最高值和最低值以来所经过的期间数,帮助投资者预测证券价格从趋势到区域、区域或反转的变化。在技术分析领域中,有一个说法,一个指标使用的人越多,其效力越低。这个技术指标还挺冷门的,我们一同来看看它的效果。 ```py from CAL.PyCAL import * import numpy as np import pandas as pd from pandas import DataFrame from heapq import nlargest from heapq import nsmallest ``` ## 二、Aroon计算方法 Aroon指标分为两个具体指标,分别`AroonUp`和`AroonDown`。其具体计算方式为: + `AroonUp = [(计算期天数-最高价后的天数)/计算期天数]*100` + `AroonDown = [(计算期天数-最低价后的天数)/计算期天数]*100` + `AroonOsc = AroonUp - AroonDown` 计算期天数通常取20天 ```py def aroonUp(account,timeLength=20): #运用heapq包的nlargest函数,可以轻松获得:计算期天数-最高价后的天数 eq_AroonUp = {} history = account.get_attribute_history('closePrice',timeLength) for stk in account.universe: priceSeries = pd.Series(history[stk]) eq_AroonUp[stk] = (nlargest(1,range(len(priceSeries)),key=priceSeries.get)[0]+1)*100/timeLength # eq_AroonUp[stk]范围在[5,100]之间 return eq_AroonUp def aroonDown(account,timeLength=20): #运用heapq包的nsmallest函数,可以轻松获得:计算期天数-最低价后的天数 eq_AroonDown = {} history = account.get_attribute_history('closePrice',timeLength) for stk in account.universe: priceSeries = pd.Series(history[stk]) eq_AroonDown[stk] = (nsmallest(1,range(len(priceSeries)),key=priceSeries.get)[0]+1)*100/timeLength # eq_AroonDown[stk]范围在[5,100]之间 return eq_AroonDown ``` 三、Aroon指标的基本用法 + 当`AroonUp`指标向下跌破50 时,表示向上的趋势正在失去动力;当`AroonDown`指标向下跌破50时,表示向下的趋势正在失去动力;如果两个指标都在低位,表示股价没有明确的趋势;如果指标在70 以上,表示趋势十分强烈;如果在30 以下,表明相反的趋势正在酝酿。通常来说,`AroonOsc`在0附近时,是典型的无趋势特征,股票处于盘整阶段。 + 参考研报[《技术指标系列(三)——加入“二次确认”的AROON 阿隆优化指标》](http://www.doc88.com/p-396145162466.html)中的方法,我们买入`AroonOsc > 50`的股票。 ```py start = '2009-08-01' # 回测起始时间 end = '2015-08-31' # 回测结束时间 benchmark = 'HS300' # 策略参考标准 universe = set_universe('HS300') # 证券池,支持股票和基金 capital_base = 100000 # 起始资金 freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测 refresh_rate = 10 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd'时间间隔的单位为交易日,若freq = 'm'时间间隔为分钟 def initialize(account): # 初始化虚拟账户状态 pass def handle_data(account): # 每个交易日的买入卖出指令 eq_AroonUp = aroonUp(account,20) eq_AroonDown = aroonDown(account,20) buyList = [] for stk in account.valid_secpos: order_to(stk, 0) for stk in account.universe: if eq_AroonUp[stk] - eq_AroonDown[stk] > 50: buyList.append(stk) for stk in buyList[:]: if stk not in account.universe or account.referencePrice[stk] == 0 or np.isnan(account.referencePrice[stk]): buyList.remove(stk) for stk in buyList: order(stk, account.referencePortfolioValue/account.referencePrice[stk]/len(buyList)) ``` ![](https://box.kancloud.cn/2016-07-30_579cbb027cf9f.jpg) 可以看出,策略在股市处于震荡市和牛市中,表现很好;而在熊市和暴跌中,表现的非常差,最大回撤很大。这从阿隆指标的构造中,就可以理解,阿隆指标是一个跟踪趋势的指标,在震荡市和牛市中,都能精选出股票,超越指数;然而在暴跌中,处于上升趋势的股票可能跌的更惨,倾巢之下,焉有完卵。。。 ## 四、运用Aroon指标来择时 前文说到阿隆指标是一个跟踪趋势的指标,既然如此,我们为什么不把它用来择时呢? ```py def aroonIndex(account,timeLength=20): #构建指数阿隆指标 indexSeries = pd.Series(account.get_symbol_history('benchmark', timeLength)['closeIndex']) indexAronUp = (nlargest(1,range(len(indexSeries)),key=indexSeries.get)[0]+1)*100/timeLength indexAronDown = (nsmallest(1,range(len(indexSeries)),key=indexSeries.get)[0]+1)*100/timeLength indexOsc = indexAronUp - indexAronDown return indexOsc ``` 当`indexOsc > 0`时,我们大致认为现在的市场环境没有那么差,可以考虑开仓,编写如下策略。 ```py start = '2009-08-01' # 回测起始时间 end = '2015-08-31' # 回测结束时间 benchmark = 'HS300' # 策略参考标准 universe = set_universe('HS300') # 证券池,支持股票和基金 capital_base = 100000 # 起始资金 freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测 refresh_rate = 10 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd'时间间隔的单位为交易日,若freq = 'm'时间间隔为分钟 def initialize(account): # 初始化虚拟账户状态 pass def handle_data(account): # 每个交易日的买入卖出指令 eq_AroonUp = aroonUp(account,20) eq_AroonDown = aroonDown(account,20) index_osc = aroonIndex(account,20) buyList = [] for stk in account.valid_secpos: order_to(stk, 0) if index_osc > 0: for stk in account.universe: if eq_AroonUp[stk] - eq_AroonDown[stk] > 50: buyList.append(stk) for stk in buyList[:]: if stk not in account.universe or account.referencePrice[stk] == 0 or np.isnan(account.referencePrice[stk]): buyList.remove(stk) for stk in buyList: order(stk, account.referencePortfolioValue/account.referencePrice[stk]/len(buyList)) ``` ![](https://box.kancloud.cn/2016-07-30_579cbb0293c03.jpg) 可以看出运用阿隆指标来择时的效果还是不错的,震荡市能跑赢指数,牛市的收益基本可以吃到,暴跌也几乎完美的规避了!缺点就是最大回测还是偏大,可以考虑让条件更严格,让`indexOsc > 50`。 ```py start = '2009-08-01' # 回测起始时间 end = '2015-08-31' # 回测结束时间 benchmark = 'HS300' # 策略参考标准 universe = set_universe('HS300') # 证券池,支持股票和基金 capital_base = 100000 # 起始资金 freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测 refresh_rate = 10 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd'时间间隔的单位为交易日,若freq = 'm'时间间隔为分钟 def initialize(account): # 初始化虚拟账户状态 pass def handle_data(account): # 每个交易日的买入卖出指令 eq_AroonUp = aroonUp(account,20) eq_AroonDown = aroonDown(account,20) index_osc = aroonIndex(account,20) buyList = [] for stk in account.valid_secpos: order_to(stk, 0) if index_osc > 50: for stk in account.universe: if eq_AroonUp[stk] - eq_AroonDown[stk] > 50: buyList.append(stk) for stk in buyList[:]: if stk not in account.universe or account.referencePrice[stk] == 0 or np.isnan(account.referencePrice[stk]): buyList.remove(stk) for stk in buyList: order(stk, account.referencePortfolioValue/account.referencePrice[stk]/len(buyList)) ``` ![](https://box.kancloud.cn/2016-07-30_579cbb02ab6df.jpg) 将择时条件设置更严格后,最大回撤果然有所下降,但年化收益率也有大幅下降。从回测图形中,也可以明显看到,指标具有很强的滞后性,往往是指数开始涨了一段时间,策略才开始开仓买入。将`indexOsc`条件设置的越严格,滞后性表现的就越明显,这样虽然可以提高正确率,减小最大回撤,但有许多收益也错过了。