# [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
> 来源:https://uqer.io/community/share/5604937ff9f06c597665ef34
在本文中,我们将通过量化实验室提供的数据,计算上证50ETF期权的历史成交持仓和PCR数据,并在最后利用PCR建立一个简单的择时策略
```py
from CAL.PyCAL import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
from matplotlib import dates
```
## 1. 期权数据接口
有关上证50ETF期权数据,量化实验室有三个接口,分别对应于不同的功能
+ `DataAPI.OptGet`: 可以获取已退市和上市的所有期权的基本信息
+ `DataAPI.MktOptdGet`: 拿到历史上某一天或某段时间的期权成交行情信息
+ `DataAPI.MktTickRTSnapshotGet`: 此为高频数据,获取期权最新市场信息快照
在接下来对于期权的数据分析中,我们将使用这三个API提供的数据,以下为API使用示例,具体API的详情可以查看帮助文档
```py
# 使用DataAPI.OptGet,拿到已退市和上市的所有期权的基本信息
opt_info = DataAPI.OptGet(optID='', contractStatus=[u"DE", u"L"], field='', pandas="1")
opt_info.head(3)
```
| | secID | optID | secShortName | tickerSymbol | exchangeCD | currencyCD | varSecID | varShortName | varTicker | varExchangeCD | ... | contMultNum | contractStatus | listDate | expYear | expMonth | expDate | lastTradeDate | exerDate | deliDate | delistDate |
| --- | --- |
| 0 | 510050C1503M02200.XSHG | 10000001 | 50ETF购3月2200 | 510050C1503M02200 | XSHG | CNY | 510050.XSHG | 华夏上证50ETF | 510050 | XSHG | ... | 10000 | DE | 2015-02-09 | 2015 | 3 | 2015-03-25 | 2015-03-25 | 2015-03-25 | 2015-03-26 | 2015-03-25 |
| 1 | 510050C1503M02250.XSHG | 10000002 | 50ETF购3月2250 | 510050C1503M02250 | XSHG | CNY | 510050.XSHG | 华夏上证50ETF | 510050 | XSHG | ... | 10000 | DE | 2015-02-09 | 2015 | 3 | 2015-03-25 | 2015-03-25 | 2015-03-25 | 2015-03-26 | 2015-03-25 |
| 2 | 510050C1503M02300.XSHG | 10000003 | 50ETF购3月2300 | 510050C1503M02300 | XSHG | CNY | 510050.XSHG | 华夏上证50ETF | 510050 | XSHG | ... | 10000 | DE | 2015-02-09 | 2015 | 3 | 2015-03-25 | 2015-03-25 | 2015-03-25 | 2015-03-26 | 2015-03-25 |
```
3 rows × 23 columns
```
```py
#使用DataAPI.MktOptdGet,拿到历史上某一天的期权成交信息
opt_mkt = DataAPI.MktOptdGet(tradeDate='20150921', field='', pandas="1")
opt_mkt.head(2)
```
| | secID | optID | ticker | secShortName | exchangeCD | tradeDate | preSettlePrice | preClosePrice | openPrice | highestPrice | lowestPrice | closePrice | settlPrice | turnoverVol | turnoverValue | openInt |
| --- | --- |
| 0 | 510050C1512M02100.XSHG | 10000368 | 510050C1512M02100 | 50ETF购12月2100 | XSHG | 2015-09-21 | 0.2069 | 0.1994 | 0.1955 | 0.2087 | 0.1955 | 0.2062 | 0.2062 | 21 | 43115 | 457 |
| 1 | 510050P1512M01950.XSHG | 10000369 | 510050P1512M01950 | 50ETF沽12月1950 | XSHG | 2015-09-21 | 0.1037 | 0.0999 | 0.1000 | 0.1073 | 0.0905 | 0.0905 | 0.0927 | 272 | 261112 | 868 |
```py
# 获取期权最新市场信息快照
opt_mkt_snapshot = DataAPI.MktOptionTickRTSnapshotGet(optionId=u"",field=u"",pandas="1")
opt_mkt_snapshot[opt_mkt_snapshot.dataDate=='2015-09-22'].head(2)
```
| | optionId | timestamp | auctionPrice | auctionQty | dataDate | dataTime | highPrice | instrumentID | lastPrice | lowPrice | ... | askBook_price1 | askBook_volume1 | askBook_price2 | askBook_volume2 | askBook_price3 | askBook_volume3 | askBook_price4 | askBook_volume4 | askBook_price5 | askBook_volume5 |
| --- | --- |
```
0 rows × 37 columns
```
## 2. 期权历史成交持仓数据图
```py
# 华夏上证50ETF收盘价数据
secID = '510050.XSHG'
begin = Date(2015, 2, 9)
end = Date.todaysDate()
fields = ['tradeDate', 'closePrice']
etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=fields)
etf['tradeDate'] = pd.to_datetime(etf['tradeDate'])
etf = etf.set_index('tradeDate')
etf.tail(2)
```
| | closePrice |
| --- | --- |
| tradeDate | |
| 2015-09-23 | 2.180 |
| 2015-09-24 | 2.187 |
统计50ETF期权历史成交量和持仓量信息
```py
# 计算历史一段时间内的50ETF期权持仓量交易量数据
def getOptHistVol(beginDate, endDate):
optionVarSecID = u"510050.XSHG"
cal = Calendar('China.SSE')
cal.addHoliday(Date(2015,9,3))
cal.addHoliday(Date(2015,9,4))
dates = cal.bizDatesList(beginDate, endDate)
dates = map(Date.toDateTime, dates)
columns = ['callVol', 'putVol', 'callValue',
'putValue', 'callOpenInt', 'putOpenInt',
'nearCallVol', 'nearPutVol', 'nearCallValue',
'nearPutValue', 'nearCallOpenInt', 'nearPutOpenInt',
'netVol', 'netValue', 'netOpenInt',
'volPCR', 'valuePCR', 'openIntPCR',
'nearVolPCR', 'nearValuePCR', 'nearOpenIntPCR']
hist_opt = pd.DataFrame(0.0, index=dates, columns=columns)
hist_opt.index.name = 'date'
# 每一个交易日数据单独计算
for date in hist_opt.index:
date_str = Date.fromDateTime(date).toISO().replace('-', '')
try:
opt_data = DataAPI.MktOptdGet(secID=u"", tradeDate=date_str, field=u"", pandas="1")
except:
hist_opt = hist_opt.drop(date)
continue
opt_type = []
exp_date = []
for ticker in opt_data.secID.values:
opt_type.append(ticker[6])
exp_date.append(ticker[7:11])
opt_data['optType'] = opt_type
opt_data['expDate'] = exp_date
near_exp = np.sort(opt_data.expDate.unique())[0]
data = opt_data.groupby('optType')
# 计算所有上市期权:看涨看跌交易量、看涨看跌交易额、看涨看跌持仓量
hist_opt['callVol'][date] = data.turnoverVol.sum()['C']
hist_opt['putVol'][date] = data.turnoverVol.sum()['P']
hist_opt['callValue'][date] = data.turnoverValue.sum()['C']
hist_opt['putValue'][date] = data.turnoverValue.sum()['P']
hist_opt['callOpenInt'][date] = data.openInt.sum()['C']
hist_opt['putOpenInt'][date] = data.openInt.sum()['P']
near_data = opt_data[opt_data.expDate == near_exp]
near_data = near_data.groupby('optType')
# 计算近月期权(主力合约): 看涨看跌交易量、看涨看跌交易额、看涨看跌持仓量
hist_opt['nearCallVol'][date] = near_data.turnoverVol.sum()['C']
hist_opt['nearPutVol'][date] = near_data.turnoverVol.sum()['P']
hist_opt['nearCallValue'][date] = near_data.turnoverValue.sum()['C']
hist_opt['nearPutValue'][date] = near_data.turnoverValue.sum()['P']
hist_opt['nearCallOpenInt'][date] = near_data.openInt.sum()['C']
hist_opt['nearPutOpenInt'][date] = near_data.openInt.sum()['P']
# 计算所有上市期权: 总交易量、总交易额、总持仓量
hist_opt['netVol'][date] = hist_opt['callVol'][date] + hist_opt['putVol'][date]
hist_opt['netValue'][date] = hist_opt['callValue'][date] + hist_opt['putValue'][date]
hist_opt['netOpenInt'][date] = hist_opt['callOpenInt'][date] + hist_opt['putOpenInt'][date]
# 计算期权看跌看涨期权交易量(持仓量)的比率:
# 交易量看跌看涨比率,交易额看跌看涨比率, 持仓量看跌看涨比率
# 近月期权交易量看跌看涨比率,近月期权交易额看跌看涨比率, 近月期权持仓量看跌看涨比率
# PCR = Put Call Ratio
hist_opt['volPCR'][date] = round(hist_opt['putVol'][date]*1.0/hist_opt['callVol'][date], 4)
hist_opt['valuePCR'][date] = round(hist_opt['putValue'][date]*1.0/hist_opt['callValue'][date], 4)
hist_opt['openIntPCR'][date] = round(hist_opt['putOpenInt'][date]*1.0/hist_opt['callOpenInt'][date], 4)
hist_opt['nearVolPCR'][date] = round(hist_opt['nearPutVol'][date]*1.0/hist_opt['nearCallVol'][date], 4)
hist_opt['nearValuePCR'][date] = round(hist_opt['nearPutValue'][date]*1.0/hist_opt['nearCallValue'][date], 4)
hist_opt['nearOpenIntPCR'][date] = round(hist_opt['nearPutOpenInt'][date]*1.0/hist_opt['nearCallOpenInt'][date], 4)
return hist_opt
```
```py
begin = Date(2015, 2, 9)
end = Date.todaysDate()
opt_hist = getOptHistVol(begin, end)
opt_hist.tail(2)
```
| | callVol | putVol | callValue | putValue | callOpenInt | putOpenInt | nearCallVol | nearPutVol | nearCallValue | nearPutValue | ... | nearPutOpenInt | netVol | netValue | netOpenInt | volPCR | valuePCR | openIntPCR | nearVolPCR | nearValuePCR | nearOpenIntPCR |
| --- | --- |
| date | | | | | | | | | | | | | | | | | | | | | |
| 2015-09-23 | 50093 | 42910 | 37809117 | 41517121 | 269395 | 144256 | 16603 | 11494 | 6217923 | 10409963 | ... | 50576 | 93003 | 79326238 | 413651 | 0.8566 | 1.0981 | 0.5355 | 0.6923 | 1.6742 | 0.3738 |
| 2015-09-24 | 29352 | 23474 | 21696859 | 22161955 | 146224 | 98350 | 19785 | 19339 | 15693989 | 14549046 | ... | 55217 | 52826 | 43858814 | 244574 | 0.7997 | 1.0214 | 0.6726 | 0.9775 | 0.9270 | 0.8012 |
```
2 rows × 21 columns
```
```py
## ----- 50ETF期权成交持仓数据图 -----
fig = plt.figure(figsize=(10,5))
fig.set_tight_layout(True)
ax = fig.add_subplot(111)
font.set_size(16)
lns1 = ax.plot(opt_hist.index, opt_hist.netOpenInt, 'grey', label = u'OpenInt')
lns2 = ax.plot(opt_hist.index, opt_hist.netVol, '-r', label = 'TurnoverVolume')
ax2 = ax.twinx()
lns3 = ax2.plot(etf.index, etf.closePrice, '-', label = 'ETF closePrice')
lns = lns1+lns2+lns3
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=2)
ax.grid()
ax.set_xlabel(u"tradeDate")
ax.set_ylabel(r"TurnoverVolume / OpenInt")
ax2.set_ylabel(r"ETF closePrice")
plt.title('50ETF Option TurnoverVolume / OpenInt')
plt.show()
```
![](https://box.kancloud.cn/2016-07-30_579cbdb9814d7.png)
从上图可以看出:
+ 期权的交易量基本上是50ETF的反向指标
+ 五月之前的疯牛中,期权日交易量处于低位
+ 六月中下旬之后的暴跌时间段,期权日交易量高位运行,是不是创个新高
+ 8月17日开始的这一周中,大盘风雨飘摇,50ETF探底时,期权交易量创了新高
+ 目前来看,期权交易仍然活跃,但是交易量较之前数据有所回落,应该是大盘企稳的节奏
## 3. 期权的PCR比例
期权分看跌和看涨两种,买入两种不同的期权,代表着对于后市的不同看法,因此可以引进一个量化指标,来表示对后市看衰与看涨的力量的强弱:
+ PCR = Put Call Ratio
+ PCR可以是关于成交量的PCR,可以是持仓量的PCR,也可以是成交额的PCR
```py
begin = Date(2015, 2, 9)
end = Date.todaysDate()
opt_hist = getOptHistVol(begin, end)
opt_hist.tail(2)
```
| | callVol | putVol | callValue | putValue | callOpenInt | putOpenInt | nearCallVol | nearPutVol | nearCallValue | nearPutValue | ... | nearPutOpenInt | netVol | netValue | netOpenInt | volPCR | valuePCR | openIntPCR | nearVolPCR | nearValuePCR | nearOpenIntPCR |
| --- | --- |
| date | | | | | | | | | | | | | | | | | | | | | |
| 2015-09-23 | 50093 | 42910 | 37809117 | 41517121 | 269395 | 144256 | 16603 | 11494 | 6217923 | 10409963 | ... | 50576 | 93003 | 79326238 | 413651 | 0.8566 | 1.0981 | 0.5355 | 0.6923 | 1.6742 | 0.3738 |
| 2015-09-24 | 29352 | 23474 | 21696859 | 22161955 | 146224 | 98350 | 19785 | 19339 | 15693989 | 14549046 | ... | 55217 | 52826 | 43858814 | 244574 | 0.7997 | 1.0214 | 0.6726 | 0.9775 | 0.9270 | 0.8012 |
```
2 rows × 21 columns
```
首先,我们来看看成交量PCR和ETF价格走势的关系
```py
## ----------------------------------------------
## 50ETF期权PC比例数据图
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
# ------ 成交量PC比例 ------
ax = fig.add_subplot(211)
lns1 = ax.plot(opt_hist.index, opt_hist.volPCR, color='r', label = u'volPCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
ax.set_ylim(0, 2)
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('Volume PCR')
# ------ 近月主力期权成交量PC比例 ------
ax = fig.add_subplot(212)
lns1 = ax.plot(opt_hist.index, opt_hist.nearVolPCR, color='r', label = u'nearVolPCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
ax.set_ylim(0, 2)
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('Dominant Contract Volume PCR')
<matplotlib.text.Text at 0x6470990>
```
![](https://box.kancloud.cn/2016-07-30_579cbdb99fb51.png)
成交量数据图中,上图为全体期权的成交量PCR,下图为近月期权的成交量PCR:
+ 上下两图中,PCR的曲线走势基本相似,因为期权交易中,近月期权最为活跃
+ ETF价格走势,和PCR走势有比较明显的负相关性
其次,我们来看看持仓量PCR和ETF价格走势的关系
```py
## ----------------------------------------------
## 50ETF期权PC比例数据图
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
# ------ 持仓量PC比例 ------
ax = fig.add_subplot(211)
lns1 = ax.plot(opt_hist.index, opt_hist.openIntPCR, color='r', label = u'volPCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
ax.set_ylim(0, 2)
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('OpenInt PCR')
# ------ 近月主力期权持仓量PC比例 ------
ax = fig.add_subplot(212)
lns1 = ax.plot(opt_hist.index, opt_hist.nearOpenIntPCR, color='r', label = u'nearVolPCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
ax.set_ylim(0, 2)
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('Dominant Contract OpenInt PCR')
<matplotlib.text.Text at 0x69e5990>
```
![](https://box.kancloud.cn/2016-07-30_579cbdb9c9bcb.png)
持仓量数据图中,上图为全体期权的持仓量PCR,下图为近月期权的持仓量PCR:
+ 上下两图中,PCR的曲线走势基本相似,因为期权交易中,近月期权最为活跃
+ 实际上,近月期权十分活跃,使得近月期权的PCR系数变动往往比整体期权PCR变化更剧烈
+ ETF价格走势,和PCR走势并无明显的负相关性
+ 相反,ETF价格的低点,往往PCR也处于低点,这其实说明:股价大跌之后大家会选择平仓看跌期权
最后,我们来看看成交额PCR和ETF价格走势的关系
```py
## ----------------------------------------------
## 50ETF期权PC比例数据图
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
# ------ 成交额PC比例 ------
ax = fig.add_subplot(211)
lns1 = ax.plot(opt_hist.index, opt_hist.valuePCR, color='r', label = u'turnoverValuePCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
#ax.set_ylim(0, 2)
ax.set_yscale('log')
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('Turnover Value PCR')
# ------ 近月主力期权成交额PC比例 ------
ax = fig.add_subplot(212)
lns1 = ax.plot(opt_hist.index, opt_hist.nearValuePCR, color='r', label = u'turnoverValuePCR')
ax2 = ax.twinx()
lns2 = ax2.plot(etf.index, etf.closePrice, '-', label = 'closePrice')
lns = lns1+lns2
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=3)
#ax.set_ylim(0, 2)
ax.set_yscale('log')
hfmt = dates.DateFormatter('%m')
ax.xaxis.set_major_formatter(hfmt)
ax.grid()
ax.set_xlabel(u"tradeDate(Month)")
ax.set_ylabel(r"PCR")
ax2.set_ylabel(r"ETF ClosePrice")
plt.title('Dominant Contract Turnover Value PCR')
<matplotlib.text.Text at 0x70ce890>
```
![](https://box.kancloud.cn/2016-07-30_579cbdb9ed549.png)
成交额数据图中,上图为全体期权的成交额PCR,下图为近月期权的成交额PCR:
+ 上下两图中,PCR的曲线走势基本相似,因为期权交易中,近月期权最为活跃
+ 实际上,近月期权PCR指数十分活跃,使得近月期权的PCR系数变动往往比整体期权PCR变化更剧烈
+ 相对于成交量和持仓量PCR指标,此处的成交额PCR指标峰值往往很高,上图中近月期权的成交额PCR最大值甚至接近30,这是由于市场恐慌时候,看跌期权成交量本身就大,而交易量大往往将看跌期权的价格大幅抬高
+ ETF价格走势,和PCR走势具有明显的负相关性
4. 基于期权成交额PCR的择时策略
根据成交额PCR和ETF价格走势明显的负相关性,我们建立一个非常简单的择时策略:
+ PCR下降时,市场情绪趋稳定,全仓买入50ETF
+ PCR上升时,恐慌情绪蔓延,清仓观望
```py
start = datetime(2015, 2, 9) # 回测起始时间
end = datetime(2015, 9, 21) # 回测结束时间
hist_pcr = getOptHistVol(start, end)
start = datetime(2015, 2, 9) # 回测起始时间
end = datetime(2015, 9, 21) # 回测结束时间
benchmark = '510050.XSHG' # 策略参考标准
universe = ['510050.XSHG'] # 股票池
capital_base = 100000 # 起始资金
commission = Commission(0.0,0.0)
refresh_rate = 1
def initialize(account): # 初始化虚拟账户状态
account.fund = universe[0]
def handle_data(account): # 每个交易日的买入卖出指令
fund = account.fund
# 获取回测当日的前一天日期
dt = Date.fromDateTime(account.current_date)
cal = Calendar('China.IB')
cal.addHoliday(Date(2015,9,3))
cal.addHoliday(Date(2015,9,4))
last_day = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #计算出倒数第一个交易日
last_last_day = cal.advanceDate(last_day,'-1B',BizDayConvention.Preceding) #计算出倒数第二个交易日
last_day_str = last_day.strftime("%Y-%m-%d")
last_last_day_str = last_last_day.strftime("%Y-%m-%d")
# 计算买入卖出信号
try:
# 拿取PCR数据
pcr_last = hist_pcr['valuePCR'].loc[last_day_str]
pcr_last_last = hist_pcr['valuePCR'].loc[last_last_day_str]
long_flag = True if (pcr_last - pcr_last_last) < 0 else False
except:
long_flag = True
if long_flag:
approximationAmount = int(account.cash / account.referencePrice[fund] / 100.0) * 100
order(fund, approximationAmount)
else:
# 卖出时,全仓清空
order_to(fund, 0)
```
![](https://box.kancloud.cn/2016-07-30_579cbdba1ff1e.jpg)
回测结果如上,需要注意的是:
+ 期权挂牌时间较短,回测时间短,加上期权市场参与人数少,故而回测结果可能然并卵
+ 但是严格根据PCR走势买卖50ETF,还是可以比较好的避开市场大跌的风险
+ 不管怎样,PCR可以作为一个择时指标来讨论
+ 除了成交额PCR,还可以通过成交量、持仓量、近月成交额等等PCR建立择时策略
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究