💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
# 基于期权PCR指数的择时策略 > 来源:https://uqer.io/community/share/55bedc1af9f06c91f818c62d ## P/C作为市场情绪指标 计算方式 P/C比例作为一种反向情绪指标,是看跌期权的成交量(成交额,持仓量等)与看涨期权的成交量(持仓量)的比值。 指标含义 + 看跌期权的成交量可以作为市场看空力量多寡的衡量; + 看涨期权的成交量可以描述市场看多力量。 指标应用 + 当P/C比例过小达到一个极端时,被视为市场过度乐观,此时市场将遏制原来的上涨趋势; + 当P/C比例过大到达另一个极端时,被视为市场过度悲观,此时市场可能出现反弹。 策略思路 比较交易日之前两日的PCR(Put Call Ratio)指数: + PCR上升时,市场恐慌情绪蔓延,卖出 + PCR下降时,恐慌情绪有所舒缓,买入 注:国内唯一一只期权上证50ETF期权,跟踪标的为华夏上证50ETF(510050)基金 ## 1. 计算历史PCR指数 ```py from matplotlib import pylab import numpy as np import pandas as pd import DataAPI import seaborn as sns sns.set_style('white') ``` ```py def getHistDayOptions(var, date): # 使用DataAPI.OptGet,拿到已退市和上市的所有期权的基本信息; # 同时使用DataAPI.MktOptdGet,拿到历史上某一天的期权成交信息; # 返回历史上指定日期交易的所有期权信息,包括: # optID varSecID contractType strikePrice expDate tradeDate closePrice turnoverValue # 以optID为index。 dateStr = date.toISO().replace('-', '') optionsMkt = DataAPI.MktOptdGet(tradeDate = dateStr, field = [u"optID", "tradeDate", "closePrice", "turnoverValue"], pandas = "1") optionsMkt = optionsMkt.set_index(u"optID") optionsMkt.closePrice.name = u"price" optionsID = map(str, optionsMkt.index.values.tolist()) fieldNeeded = ["optID", u"varSecID", u'contractType', u'strikePrice', u'expDate'] optionsInfo = DataAPI.OptGet(optID=optionsID, contractStatus = [u"DE", u"L"], field=fieldNeeded, pandas="1") optionsInfo = optionsInfo.set_index(u"optID") options = concat([optionsInfo, optionsMkt], axis=1, join='inner').sort_index() return options[options.varSecID==var] def calDayTurnoverValuePCR(optionVarSecID, date): # 计算历史每日的看跌看涨期权交易额的比值 # PCR: put call ratio options = getHistDayOptions(optionVarSecID, date) call = options[options.contractType==u"CO"] put = options[options.contractType==u"PO"] callTurnoverValue = call.turnoverValue.sum() putTurnoverValue = put.turnoverValue.sum() return 1.0 * putTurnoverValue / callTurnoverValue def getHistPCR(beginDate, endDate): # 计算历史一段时间内的PCR指数并返回 optionVarSecID = u"510050.XSHG" cal = Calendar('China.SSE') dates = cal.bizDatesList(beginDate, endDate) dates = map(Date.toDateTime, dates) histPCR = pd.DataFrame(0.0, index=dates, columns=['PCR']) histPCR.index.name = 'date' for date in histPCR.index: histPCR['PCR'][date] = calDayTurnoverValuePCR(optionVarSecID, Date.fromDateTime(date)) return histPCR def getDayPCR(date): # 计算历史一段时间内的PCR指数并返回 optionVarSecID = u"510050.XSHG" return calDayTurnoverValuePCR(optionVarSecID, date) ``` ```py secID = '510050.XSHG' begin = Date(2015, 2, 9) end = Date(2015, 7, 30) getHistPCR(begin, end).tail() ``` | | PCR | | --- | --- | | date | | | 2015-07-24 | 1.032107 | | 2015-07-27 | 2.097952 | | 2015-07-28 | 2.288790 | | 2015-07-29 | 1.971831 | | 2015-07-30 | 1.527717 | ## 2. PCR指数与华夏上证50ETF基金的走势对比 ```py secID = '510050.XSHG' begin = Date(2015, 2, 9) end = Date(2015, 7, 30) # 历史PCR histPCR = getHistPCR(begin, end) # 华夏上证50ETF etf = DataAPI.MktFunddGet(secID, beginDate=begin.toISO().replace('-', ''), endDate=end.toISO().replace('-', ''), field=['tradeDate', 'closePrice']) etf['tradeDate'] = pd.to_datetime(etf['tradeDate']) etf = etf.set_index('tradeDate') ``` ```py font.set_size(12) pylab.figure(figsize = (16,8)) ax1 = histPCR.plot(x=histPCR.index, y='PCR', style='r') ax1.set_xlabel(u'日期', fontproperties=font) ax1.set_ylabel(u'PCR(%)', fontproperties=font) ax2 = ax1.twinx() ax2.plot(etf.index,etf.closePrice) ax2.set_ylabel(u'ETF Price', fontproperties=font) <matplotlib.text.Text at 0x78a4d90> ``` ![](https://box.kancloud.cn/2016-07-30_579cbdc247b6d.png) 从上图可以看出,每次PC指标的上升都对应着标的价格的下挫 ## 3. 基于PCR指数的择时策略示例 ```py start = datetime(2015, 2, 9) # 回测起始时间 end = datetime(2015, 7, 31) # 回测结束时间 benchmark = '510050.XSHG' # 策略参考标准 universe = ['510050.XSHG'] # 股票池 capital_base = 100000 # 起始资金 commission = Commission(0.0,0.0) longest_history = 1 histPCR = getHistPCR(start, end) def initialize(account): # 初始化虚拟账户状态 account.fund = universe[0] def handle_data(account): # 每个交易日的买入卖出指令 hist = account.get_history(longest_history) fund = account.fund # 获取回测当日的前一天日期 dt = Date.fromDateTime(account.current_date) cal = Calendar('China.IB') lastTDay = cal.advanceDate(dt,'-1B',BizDayConvention.Preceding) #计算出倒数第一个交易日 lastLastTDay = cal.advanceDate(lastTDay,'-1B',BizDayConvention.Preceding) #计算出倒数第二个交易日 last_day_str = lastTDay.strftime("%Y-%m-%d") last_last_day_str = lastLastTDay.strftime("%Y-%m-%d") # 计算买入卖出信号 try: pcr_last = histPCR['PCR'].loc[last_day_str] # 计算短均线值 pcr_last_last = histPCR['PCR'].loc[last_last_day_str] # 计算长均线值 long_flag = True if (pcr_last - pcr_last_last) < 0 else False except: return if long_flag: if account.position.secpos.get(fund, 0) == 0: # 空仓时全仓买入,买入股数为100的整数倍 approximationAmount = int(account.cash / hist[fund]['closePrice'][-1]/100.0) * 100 order(fund, approximationAmount) else: # 卖出时,全仓清空 if account.position.secpos.get(fund, 0) >= 0: order_to(fund, 0) ``` ![](https://box.kancloud.cn/2016-07-30_579cbdc267299.jpg) 基于PCR指数上升时空仓、下降时进场的策略来买卖标的,可以比较有效地降低标的大跌的风险