# 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
> 来源:https://uqer.io/community/share/5530d9f1f9f06c8f3390465a
> 从今天开始我们将进入一个系列 —— 偏微分方程。作为这一系列的开篇,我们以热传导方差为引子,引出:
>
> 1. 如何提一个偏微分方程的初边值问题;
> 1. 利用差分格式将偏微分方程离散化;
> 1. 显示差分格式;
> 1. 显示差分格式的条件稳定性。
>
> 最后一点将作为伏笔,引出我们下一天的学习:无条件稳定格式。
## 1. 热传导方程
![](https://box.kancloud.cn/2016-07-30_579cb731ea151.jpg)
其中:
+ `κ` 称为热传导系数
+ `[2]` 称为方程的初值条件(Initial Condition)
+ `[3][4]` 称为方程的边值条件 (Boundaries Condition)。这里我们使用Dirichlet条件
我们可以看一下初值条件的形状:
```py
from matplotlib import pylab
import seaborn as sns
import numpy as np
font.set_size(20)
def initialCondition(x):
return 4.0*(1.0 - x) * x
xArray = np.linspace(0,1.0,50)
yArray = map(initialCondition, xArray)
pylab.figure(figsize = (12,6))
pylab.plot(xArray, yArray)
pylab.xlabel('$x$', fontsize = 15)
pylab.ylabel('$f(x)$', fontsize = 15)
pylab.title(u'一维热传导方程初值条件', fontproperties = font)
<matplotlib.text.Text at 0x12523810>
```
![](https://box.kancloud.cn/2016-07-30_579cb73207d53.png)
## 2. 显式差分格式
这里的基本思想是用差分格式替换对应的微分形式,并且期盼两种格式的"误差"在网格足够密的情况下会趋于0。我们分别在时间方向以及空间方向做差分格式:
![](https://box.kancloud.cn/2016-07-30_579cb7321d137.jpg)
合并在一起,我们就得到了原始微分方程的差分格式:
![](https://box.kancloud.cn/2016-07-30_579cb7322e0e0.jpg)
这里我们使用差分网格上的近似值`Uj,k`代替`uj,k`,得到新的方程:
![](https://box.kancloud.cn/2016-07-30_579cb73240f61.jpg)
到这里我们得到一个迭代方程组:
![](https://box.kancloud.cn/2016-07-30_579cb73252541.jpg)
其中![](https://box.kancloud.cn/2016-07-30_579cb73266801.jpg)。下面我们使用Python代码实现上面的过程。
首先定义基本变量:
+ `N` 空间方向的网格数
+ `M` 时间方向的网格数
+ `T` 最大时间期限
+ `X` 最大空间范围
+ `U` 用来存储差分网格点上值得矩阵
```py
N = 25 # x方向网格数
M = 2500 # t方向网格数
T = 1.0
X = 1.0
xArray = np.linspace(0,X,N+1)
yArray = map(initialCondition, xArray)
starValues = yArray
U = np.zeros((N+1,M+1))
U[:,0] = starValues
```
```py
dx = X / N
dt = T / M
kappa = 1.0
rho = kappa * dt / dx / dx
```
这里我们做正向迭代:迭代时 `k=0,1...M−1`, 代表我们从0时刻运行至`T`
```py
for k in range(0, M):
for j in range(1, N):
U[j][k+1] = rho * U[j-1][k] + (1. - 2*rho) * U[j][k] + rho * U[j+1][k]
U[0][k+1] = 0.
U[N][k+1] = 0.
```
我们可以画出不同时间点 `U(,˙τk)` 的结果:
```py
pylab.figure(figsize = (12,6))
pylab.plot(xArray, U[:,0])
pylab.plot(xArray, U[:, int(0.10/ dt)])
pylab.plot(xArray, U[:, int(0.20/ dt)])
pylab.plot(xArray, U[:, int(0.50/ dt)])
pylab.xlabel('$x$', fontsize = 15)
pylab.ylabel(r'$U(\dot, \tau)$', fontsize = 15)
pylab.title(u'一维热传导方程', fontproperties = font)
pylab.legend([r'$\tau = 0.$', r'$\tau = 0.10$', r'$\tau = 0.20$', r'$\tau = 0.50$'], fontsize = 15)
<matplotlib.legend.Legend at 0x12577cd0>
```
![](https://box.kancloud.cn/2016-07-30_579cb7327913b.png)
也可以通过三维立体图看一下整体的热传导过程:
```py
tArray = np.linspace(0, 0.2, int(0.2 / dt) + 1)
xGrids, tGrids = np.meshgrid(xArray, tArray)
```
```py
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
surface = ax.plot_surface(xGrids, tGrids, U[:,:int(0.2 / dt) + 1].T, cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"热传导方程 $u_\\tau = u_{xx}$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0xf6eb878>
```
![](https://box.kancloud.cn/2016-07-30_579cb732913cc.png)
## 3. 组装起来
就像在前一天二叉树建模中介绍的一样,我们这里会以面向对象的方式重新封装分散的代码,方便复用。首先是方程的描述:
```py
class HeatEquation:
def __init__(self, kappa, X, T,
initialConstion = lambda x:4.0*x*(1.0-x), boundaryConditionL = lambda x: 0, boundaryCondtionR = lambda x:0):
self.kappa = kappa
self.ic = initialConstion
self.bcl = boundaryConditionL
self.bcr = boundaryCondtionR
self.X = X
self.T = T
```
下面的是显式差分格式的描述:
```py
class ExplicitEulerScheme:
def __init__(self, M, N, equation):
self.eq = equation
self.dt = self.eq.T / M
self.dx = self.eq.X / N
self.U = np.zeros((N+1, M+1))
self.xArray = np.linspace(0,self.eq.X,N+1)
self.U[:,0] = map(self.eq.ic, self.xArray)
self.rho = self.eq.kappa * self.dt / self.dx / self.dx
self.M = M
self.N = N
def roll_back(self):
for k in range(0, self.M):
for j in range(1, self.N):
self.U[j][k+1] = self.rho * self.U[j-1][k] + (1. - 2*self.rho) * self.U[j][k] + self.rho * self.U[j+1][k]
self.U[0][k+1] = self.eq.bcl(self.xArray[0])
self.U[N][k+1] = self.eq.bcr(self.xArray[-1])
def mesh_grids(self):
tArray = np.linspace(0, self.eq.T, M+1)
tGrids, xGrids = np.meshgrid(tArray, self.xArray)
return tGrids, xGrids
```
有了以上的部分,现在整个过程可以简单的通过初始化和一行关于`roll_back`的调用完成:
```py
ht = HeatEquation(1.,1.,1.)
scheme = ExplicitEulerScheme(2500,25, ht)
scheme.roll_back()
```
我们可以获取与之前相同的图像:
```py
tGrids, xGrids = scheme.mesh_grids()
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
cutoff = int(0.2 / scheme.dt) + 1
surface = ax.plot_surface(xGrids[:,:cutoff], tGrids[:,:cutoff], scheme.U[:,:cutoff], cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"热传导方程 $u_\\tau = u_{xx}$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0x12d69e60>
```
![](https://box.kancloud.cn/2016-07-30_579cb732b7748.png)
## 4. 什么时候显式格式会失败?
显式格式不能任意取时间和空间的网格点数,即`M`与`N`不能随意取值。我们称显式格式为条件稳定。特别地,需要满足所谓CFL条件(Courant–Friedrichs–Lewy):
![](https://box.kancloud.cn/2016-07-30_579cb732d77bd.jpg)
例如:
+ `M` = 2500
+ `N` = 25
则:
![](https://box.kancloud.cn/2016-07-30_579cb732e9341.jpg)
+ `M` = 1200
+ `N` = 25
则:
![](https://box.kancloud.cn/2016-07-30_579cb73308ec9.jpg)
下面的代码计算在第二种情形下的网格点计算过程:
```py
ht = HeatEquation(1.,1.,1.)
scheme = ExplicitEulerScheme(1200,25, ht)
scheme.roll_back()
```
我们可以通过下图看到,在CFL条件无法满足的情况下,数值误差累计的结果(特别注意后面的锯齿):
```py
tGrids, xGrids = scheme.mesh_grids()
fig= pylab.figure(figsize = (16,10))
ax = fig.add_subplot(1, 1, 1, projection = '3d')
cutoff = int(0.2 / scheme.dt) + 1
surface = ax.plot_surface(xGrids[:,:cutoff], tGrids[:,:cutoff], scheme.U[:,:cutoff], cmap=cm.coolwarm)
ax.set_xlabel("$x$", fontdict={"size":18})
ax.set_ylabel(r"$\tau$", fontdict={"size":18})
ax.set_zlabel(r"$U$", fontdict={"size":18})
ax.set_title(u"热传导方程 $u_\\tau = u_{xx}$, $\\rho = 0.521$" , fontproperties = font)
fig.colorbar(surface,shrink=0.75)
<matplotlib.colorbar.Colorbar instance at 0x10f51b48>
```
![](https://box.kancloud.cn/2016-07-30_579cb7331cfae.png)
今天的日记到此为止,这个问题我们会在下一篇中进行讨论,引出无条件稳定格式:隐式差分格式(Implicit)。
- Python 量化交易教程
- 第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
- 第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 破解Alpha对冲策略——观《量化分析师Python日记第14天》有感
- 熔断不要怕, alpha model 为你保驾护航!
- 寻找 alpha 之: alpha 设计
- 1.2 基本面因子选股
- Porfolio(现金比率+负债现金+现金保障倍数)+市盈率
- ROE选股指标
- 成交量因子
- ROIC&cashROIC
- 【国信金工】资产周转率选股模型
- 【基本面指标】Cash Cow
- 量化因子选股——净利润/营业总收入
- 营业收入增长率+市盈率
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)
- 技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
- 谁是中国A股最有钱的自然人
- 1.5 宏观研究
- 【干货包邮】手把手教你做宏观择时
- 宏观研究:从估值角度看当前市场
- 追寻“国家队”的足迹
- 二 套利
- 2.1 配对交易
- HS300ETF套利(上)
- 【统计套利】配对交易
- 相似公司股票搬砖
- Paired trading
- 2.2 期现套利 • 通过股指期货的期现差与 ETF 对冲套利
- 三 事件驱动
- 3.1 盈利预增
- 盈利预增事件
- 事件驱动策略示例——盈利预增
- 3.2 分析师推荐 • 分析师的金手指?
- 3.3 牛熊转换
- 历史总是相似 牛市还在延续
- 历史总是相似 牛市已经见顶?
- 3.4 熔断机制 • 股海拾贝之 [熔断错杀股]
- 3.5 暴涨暴跌 • [实盘感悟] 遇上暴跌我该怎么做?
- 3.6 兼并重组、举牌收购 • 宝万战-大戏开幕
- 四 技术分析
- 4.1 布林带
- 布林带交易策略
- 布林带回调系统-日内
- Conservative Bollinger Bands
- Even More Conservative Bollinger Bands
- Simple Bollinger Bands
- 4.2 均线系统
- 技术分析入门 —— 双均线策略
- 5日线10日线交易策略
- 用5日均线和10日均线进行判断 --- 改进版
- macross
- 4.3 MACD
- Simple MACD
- MACD quantization trade
- MACD平滑异同移动平均线方法
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 重写 rsi
- RSI指标策略
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- CMO 策略模仿练习 1
- CMO策略模仿练习2
- [技术指标] CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 嘉庆离散指标测试
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 按照封单跟流通股本比例排序,剔除6月上市新股,前50
- 涨停股票封单统计
- 实时计算涨停板股票的封单资金与总流通市值的比例
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- Momentum策略
- 【小散学量化】-2-动量模型的简单实践
- 一个追涨的策略(修正版)
- 动量策略(momentum driven)
- 动量策略(momentum driven)——修正版
- 最经典的Momentum和Contrarian在中国市场的测试
- 最经典的Momentum和Contrarian在中国市场的测试-yanheven改进
- [策略]基于胜率的趋势交易策略
- 策略探讨(更新):价量结合+动量反转
- 反向动量策略(reverse momentum driven)
- 轻松跑赢大盘 - 主题Momentum策略
- Contrarian strategy
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model · 基本面选股系统:Piotroski F-Score ranking system
- 5.3 SVR · 使用SVR预测股票开盘价 v1.0
- 5.4 决策树、随机树
- 决策树模型(固定模型)
- 基于Random Forest的决策策略
- 5.5 钟摆理论 · 钟摆理论的简单实现——完美躲过股灾和精准抄底
- 5.6 海龟模型
- simple turtle
- 侠之大者 一起赚钱
- 5.7 5217 策略 · 白龙马的新手策略
- 5.8 SMIA · 基于历史状态空间相似性匹配的行业配置 SMIA 模型—取交集
- 5.9 神经网络
- 神经网络交易的训练部分
- 通过神经网络进行交易
- 5.10 PAMR · PAMR : 基于均值反转的投资组合选择策略 - 修改版
- 5.11 Fisher Transform · Using Fisher Transform Indicator
- 5.12 分型假说, Hurst 指数 · 分形市场假说,一个听起来很美的假说
- 5.13 变点理论 · 变点策略初步
- 5.14 Z-score Model
- Zscore Model Tutorial
- 信用债风险模型初探之:Z-Score Model
- user-defined package
- 5.15 机器学习 · Machine Learning 学习笔记(一) by OTreeWEN
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 今天大盘熔断大跌,后市如何—— based on LPPL anti-bubble model
- 破解股市泡沫之谜——对数周期幂率(LPPL)模型
- 六 大数据模型
- 6.1 市场情绪分析
- 通联情绪指标策略
- 互联网+量化投资 大数据指数手把手
- 6.2 新闻热点
- 如何使用优矿之“新闻热点”?
- 技术分析【3】—— 众星拱月,众口铄金?
- 七 排名选股系统
- 7.1 小市值投资法
- 学习笔记:可模拟(小市值+便宜 的修改版)
- 市值最小300指数
- 流通市值最小股票(新筛选器版)
- 持有市值最小的10只股票
- 10% smallest cap stock
- 7.2 羊驼策略
- 羊驼策略
- 羊驼反转策略(修改版)
- 羊驼反转策略
- 我的羊驼策略,选5只股无脑轮替
- 7.3 低价策略
- 专捡便宜货(新版quartz)
- 策略原理
- 便宜就是 alpha
- 八 轮动模型
- 8.1 大小盘轮动 · 新手上路 -- 二八ETF择时轮动策略2.0
- 8.2 季节性策略
- Halloween Cycle
- Halloween cycle 2
- 夏买电,东买煤?
- 历史的十一月板块涨幅
- 8.3 行业轮动
- 银行股轮动
- 申万二级行业在最近1年、3个月、5个交易日的涨幅统计
- 8.4 主题轮动
- 快速研究主题神器
- recommendation based on subject
- strategy7: recommendation based on theme
- 板块异动类
- 风险因子(离散类)
- 8.5 龙头轮动
- Competitive Securities
- Market Competitiveness
- 主题龙头类
- 九 组合投资
- 9.1 指数跟踪 · [策略] 指数跟踪低成本建仓策略
- 9.2 GMVP · Global Minimum Variance Portfolio (GMVP)
- 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题
- 十 波动率
- 10.1 波动率选股 · 风平浪静 风起猪飞
- 10.2 波动率择时
- 基于 VIX 指数的择时策略
- 简单低波动率指数
- 10.3 Arch/Garch 模型 · 如何使用优矿进行 GARCH 模型分析
- 十一 算法交易
- 11.1 VWAP · Value-Weighted Average Price (VWAP)
- 十二 中高频交易
- 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
- 12.2 日内交易 · 大盘日内走势 (for 择时)
- 十三 Alternative Strategy
- 13.1 易经、传统文化 · 老黄历诊股
- 第三部分 基金、利率互换、固定收益类
- 一 分级基金
- “优矿”集思录——分级基金专题
- 基于期权定价的分级基金交易策略
- 基于期权定价的兴全合润基金交易策略
- 二 基金分析
- Alpha 基金“黑天鹅事件” -- 思考以及原因
- 三 债券
- 债券报价中的小陷阱
- 四 利率互换
- Swap Curve Construction
- 中国 Repo 7D 互换的例子
- 第四部分 衍生品相关
- 一 期权数据
- 如何获取期权市场数据快照
- 期权高频数据准备
- 二 期权系列
- [ 50ETF 期权] 1. 历史成交持仓和 PCR 数据
- 【50ETF期权】 2. 历史波动率
- 【50ETF期权】 3. 中国波指 iVIX
- 【50ETF期权】 4. Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑
- 三 期权分析
- 【50ETF期权】 期权择时指数 1.0
- 每日期权风险数据整理
- 期权头寸计算
- 期权探秘1
- 期权探秘2
- 期权市场一周纵览
- 基于期权PCR指数的择时策略
- 期权每日成交额PC比例计算
- 四 期货分析
- 【前方高能!】Gifts from Santa Claus——股指期货趋势交易研究