## 开始第一步
我们现在开始进行一个简单教程,它涵盖了一些基本的概念介绍,比如**索引(indexing)**、**搜索(search)**以及**聚合(aggregations)**。通过这个教程,我们可以让你对Elasticsearch能做的事以及其易用程度有一个大致的感觉。
我们接下来将陆续介绍一些术语和基本的概念,但就算你没有马上完全理解也没有关系。我们将在本书的各个章节中更加深入的探讨这些内容。
所以,坐下来,开始以旋风般的速度来感受Elasticsearch的能力吧!
## 让我们建立一个员工目录
假设我们刚好在**Megacorp**工作,这时人力资源部门出于某种目的需要让我们创建一个员工目录,这个目录用于促进人文关怀和用于实时协同工作,所以它有以下不同的需求:
* 数据能够包含多个值的标签、数字和纯文本。
* 检索任何员工的所有信息。
* 支持结构化搜索,例如查找30岁以上的员工。
* 支持简单的全文搜索和更复杂的**短语(phrase)**搜索
* 高亮搜索结果中的关键字
* 能够利用图表管理分析这些数据
## 索引员工文档
我们首先要做的是存储员工数据,每个文档代表一个员工。在Elasticsearch中存储数据的行为就叫做**索引(indexing)**,不过在索引之前,我们需要明确数据应该存储在哪里。
在Elasticsearch中,文档归属于一种**类型(type)**,而这些类型存在于**索引(index)**中,我们可以画一些简单的对比图来类比传统关系型数据库:
```
Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields
```
Elasticsearch集群可以包含多个**索引(indices)**(数据库),每一个索引可以包含多个**类型(types)**(表),每一个类型包含多个**文档(documents)**(行),然后每个文档包含多个**字段(Fields)**(列)。
>### 「索引」含义的区分
你可能已经注意到**索引(index)**这个词在Elasticsearch中有着不同的含义,所以有必要在此做一下区分:
- 索引(名词)
如上文所述,一个**索引(index)**就像是传统关系数据库中的**数据库**,它是相关文档存储的地方,index的复数是**indices **或**indexes**。
- 索引(动词)
**「索引一个文档」**表示把一个文档存储到**索引(名词)**里,以便它可以被检索或者查询。这很像SQL中的`INSERT`关键字,差别是,如果文档已经存在,新的文档将覆盖旧的文档。
- 倒排索引
传统数据库为特定列增加一个索引,例如B-Tree索引来加速检索。Elasticsearch和Lucene使用一种叫做**倒排索引(inverted index)**的数据结构来达到相同目的。
默认情况下,文档中的所有字段都会被**索引**(拥有一个倒排索引),只有这样他们才是可被搜索的。
我们将会在[倒排索引](../052_Mapping_Analysis/35_Inverted_index.md)章节中更详细的讨论。
所以为了创建员工目录,我们将进行如下操作:
* 为每个员工的**文档(document)**建立索引,每个文档包含了相应员工的所有信息。
* 每个文档的类型为`employee`。
* `employee`类型归属于索引`megacorp`。
* `megacorp`索引存储在Elasticsearch集群中。
实际上这些都是很容易的(尽管看起来有许多步骤)。我们能通过一个命令执行完成的操作:
```Javascript
PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
```
我们看到path:`/megacorp/employee/1`包含三部分信息:
| 名字 | 说明 |
| ---------- | ----------- |
|megacorp|索引名 |
|employee|类型名 |
|1 |这个员工的ID |
请求实体(JSON文档),包含了这个员工的所有信息。他的名字叫“John Smith”,25岁,喜欢攀岩。
很简单吧!它不需要你做额外的管理操作,比如创建索引或者定义每个字段的数据类型。我们能够直接索引文档,Elasticsearch已经内置所有的缺省设置,所有管理操作都是透明的。
接下来,让我们在目录中加入更多员工信息:
```Javascript
PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}
PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
```
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion