[[common-terms]]
=== Divide and Conquer
The terms in a query string can be divided into more-important (low-frequency)
and less-important (high-frequency) terms.((("stopwords", "low and high frequency terms"))) Documents that match only the less
important terms are probably of very little interest. Really, we want
documents that match as many of the more important terms as possible.
The `match` query accepts ((("cutoff_frequency parameter")))((("match query", "cutoff_frequency parameter")))a `cutoff_frequency` parameter, which allows it to
divide the terms in the query string into a low-frequency and high-frequency
group.((("term frequency", "cutoff_frequency parameter in match query"))) The low-frequency group (more-important terms) form the bulk of the
query, while the high-frequency group (less-important terms) is used only for
scoring, not for matching. By treating these two groups differently, we can
gain a real boost of speed on previously slow queries.
.Domain-Specific Stopwords
*********************************************
One of the benefits of `cutoff_frequency` is that you get _domain-specific_
stopwords for free.((("domain specific stopwords")))((("stopwords", "domain specific"))) For instance, a website about movies may use the words
_movie_, _color_, _black_, and _white_ so often that they could be
considered almost meaningless. With the `stop` token filter, these domain-specific terms would have to be added to the stopwords list manually. However,
because the `cutoff_frequency` looks at the actual frequency of terms in the
index, these words would be classified as _high frequency_ automatically.
*********************************************
Take this query as an example:
[source,json]
---------------------------------
{
"match": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01 <1>
}
}
---------------------------------
<1> Any term that occurs in more than 1% of documents is considered to be high
frequency. The `cutoff_frequency` can be specified as a fraction (`0.01`)
or as an absolute number (`5`).
This query uses the `cutoff_frequency` to first divide the query terms into a
low-frequency group (`quick`, `dead`) and a high-frequency group (`and`,
`the`). Then, the query is rewritten to produce the following `bool` query:
[source,json]
---------------------------------
{
"bool": {
"must": { <1>
"bool": {
"should": [
{ "term": { "text": "quick" }},
{ "term": { "text": "dead" }}
]
}
},
"should": { <2>
"bool": {
"should": [
{ "term": { "text": "and" }},
{ "term": { "text": "the" }}
]
}
}
}
}
---------------------------------
<1> At least one low-frequency/high-importance term _must_ match.
<2> High-frequency/low-importance terms are entirely optional.
The `must` clause means that at least one of the low-frequency terms—`quick` or `dead`—_must_ be present for a document to be considered a
match. All other documents are excluded. The `should` clause then looks for
the high-frequency terms `and` and `the`, but only in the documents collected
by the `must` clause. The sole job of the `should` clause is to score a
document like ``Quick _and the_ dead'' higher than ``_The_ quick but
dead''. This approach greatly reduces the number of documents that need to be
examined and scored.
[TIP]
==================================================
Setting the operator parameter to `and` would make _all_ low-frequency terms
required, and score documents that contain _all_ high-frequency terms higher.
However, matching documents would not be required to contain all high-frequency terms. If you would prefer all low- and high-frequency terms to be
required, you should use a `bool` query instead. As we saw in
<<stopwords-and>>, this is already an efficient query.
==================================================
==== Controlling Precision
The `minimum_should_match` parameter can be combined with `cutoff_frequency`
but it applies to only the low-frequency terms.((("stopwords", "low and high frequency terms", "controlling precision")))((("minimum_should_match parameter", "controlling precision"))) This query:
[source,json]
---------------------------------
{
"match": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01,
"minimum_should_match": "75%"
}
}
---------------------------------
would be rewritten as follows:
[source,json]
---------------------------------
{
"bool": {
"must": {
"bool": {
"should": [
{ "term": { "text": "quick" }},
{ "term": { "text": "dead" }}
],
"minimum_should_match": 1 <1>
}
},
"should": { <2>
"bool": {
"should": [
{ "term": { "text": "and" }},
{ "term": { "text": "the" }}
]
}
}
}
}
---------------------------------
<1> Because there are only two terms, the original 75% is rounded down
to `1`, that is: _one out of two low-terms must match_.
<2> The high-frequency terms are still optional and used only for scoring.
==== Only High-Frequency Terms
An `or` query for high-frequency((("stopwords", "low and high frequency terms", "only high frequency terms"))) terms only—``To be, or not to be''—is
the worst case for performance. It is pointless to score _all_ the
documents that contain only one of these terms in order to return just the top
10 matches. We are really interested only in documents in which the terms all occur
together, so in the case where there are no low-frequency terms, the query is
rewritten to make all high-frequency terms required:
[source,json]
---------------------------------
{
"bool": {
"must": [
{ "term": { "text": "to" }},
{ "term": { "text": "be" }},
{ "term": { "text": "or" }},
{ "term": { "text": "not" }},
{ "term": { "text": "to" }},
{ "term": { "text": "be" }}
]
}
}
---------------------------------
==== More Control with Common Terms
While the high/low frequency functionality in the `match` query is useful,
sometimes you want more control((("stopwords", "low and high frequency terms", "more control over common terms"))) over how the high- and low-frequency groups
should be handled. The `match` query exposes a subset of the
functionality available in the `common` terms query.((("common terms query")))
For instance, we could make all low-frequency terms required, and score only
documents that have 75% of all high-frequency terms with a query like this:
[source,json]
---------------------------------
{
"common": {
"text": {
"query": "Quick and the dead",
"cutoff_frequency": 0.01,
"low_freq_operator": "and",
"minimum_should_match": {
"high_freq": "75%"
}
}
}
}
---------------------------------
See the http://bit.ly/1wdS2Qo[`common` terms query] reference page for more options.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion