[[phrase-matching]]
=== Phrase Matching
In the same way that the `match` query is the go-to query for standard
full-text search, the `match_phrase` query((("proximity matching", "phrase matching")))((("phrase matching")))((("match_phrase query"))) is the one you should reach for
when you want to find words that are near each other:
[source,js]
--------------------------------------------------
GET /my_index/my_type/_search
{
"query": {
"match_phrase": {
"title": "quick brown fox"
}
}
}
--------------------------------------------------
// SENSE: 120_Proximity_Matching/05_Match_phrase_query.json
Like the `match` query, the `match_phrase` query first analyzes the query
string to produce a list of terms. It then searches for all the terms, but
keeps only documents that contain _all_ of the search terms, in the same
_positions_ relative to each other. A query for the phrase `quick fox`
would not match any of our documents, because no document contains the word
`quick` immediately followed by `fox`.
[TIP]
==================================================
The `match_phrase` query can also be written as a `match` query with type
`phrase`:
[source,js]
--------------------------------------------------
"match": {
"title": {
"query": "quick brown fox",
"type": "phrase"
}
}
--------------------------------------------------
// SENSE: 120_Proximity_Matching/05_Match_phrase_query.json
==================================================
==== Term Positions
When a string is analyzed, the analyzer returns not((("phrase matching", "term positions")))((("match_phrase query", "position of terms")))((("position-aware matching"))) only a list of terms, but
also the _position_, or order, of each term in the original string:
[source,js]
--------------------------------------------------
GET /_analyze?analyzer=standard
Quick brown fox
--------------------------------------------------
// SENSE: 120_Proximity_Matching/05_Term_positions.json
This returns the following:
[role="pagebreak-before"]
[source,js]
--------------------------------------------------
{
"tokens": [
{
"token": "quick",
"start_offset": 0,
"end_offset": 5,
"type": "<ALPHANUM>",
"position": 1 <1>
},
{
"token": "brown",
"start_offset": 6,
"end_offset": 11,
"type": "<ALPHANUM>",
"position": 2 <1>
},
{
"token": "fox",
"start_offset": 12,
"end_offset": 15,
"type": "<ALPHANUM>",
"position": 3 <1>
}
]
}
--------------------------------------------------
<1> The `position` of each term in the original string.
Positions can be stored in the inverted index, and position-aware queries like
the `match_phrase` query can use them to match only documents that contain
all the words in exactly the order specified, with no words in-between.
==== What Is a Phrase
For a document to be considered a((("match_phrase query", "documents matching a phrase")))((("phrase matching", "criteria for matching documents"))) match for the phrase ``quick brown fox,'' the following must be true:
* `quick`, `brown`, and `fox` must all appear in the field.
* The position of `brown` must be `1` greater than the position of `quick`.
* The position of `fox` must be `2` greater than the position of `quick`.
If any of these conditions is not met, the document is not considered a match.
[TIP]
==================================================
Internally, the `match_phrase` query uses the low-level `span` query family to
do position-aware matching. ((("match_phrase query", "use of span queries for position-aware matching")))((("span queries")))Span queries are term-level queries, so they have
no analysis phase; they search for the exact term specified.
Thankfully, most people never need to use the `span` queries directly, as the
`match_phrase` query is usually good enough. However, certain specialized
fields, like patent searches, use these low-level queries to perform very
specific, carefully constructed positional searches.
==================================================
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion