企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
### 最佳字段 假设我们有一个让用户搜索博客文章的网站(允许多字段搜索,最佳字段查询),就像这两份文档一样: ```Javascript PUT /my_index/my_type/1 { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } PUT /my_index/my_type/2 { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } ``` // SENSE: 110_Multi_Field_Search/15_Best_fields.json 用户输入了"Brown fox",然后按下了搜索键。我们无法预先知道用户搜索的词条会出现在博文的title或者body字段中,但是用户是在搜索和他输入的单词相关的内容。右眼观察,以上的两份文档中,文档2似乎匹配的更好一些,因为它包含了用户寻找的两个单词。 让我们运行下面的bool查询: ```Javascript { "query": { "bool": { "should": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } } ``` // SENSE: 110_Multi_Field_Search/15_Best_fields.json 然后我们发现文档1的分值更高: ```Javascript { "hits": [ { "_id": "1", "_score": 0.14809652, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } }, { "_id": "2", "_score": 0.09256032, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } } ] } ``` 要理解原因,想想bool查询是如何计算得到其分值的: * 1.运行should子句中的两个查询 * 2.相加查询返回的分值 * 3.将相加得到的分值乘以匹配的查询子句的数量 * 4.除以总的查询子句的数量 文档1在两个字段中都包含了brown,因此两个match查询都匹配成功并拥有了一个分值。文档2在body字段中包含了brown以及fox,但是在title字段中没有出现任何搜索的单词。因此对body字段查询得到的高分加上对title字段查询得到的零分,然后在乘以匹配的查询子句数量1,最后除以总的查询子句数量2,导致整体分值比文档1的低。 在这个例子中,title和body字段是互相竞争的。我们想要找到一个最佳匹配(Best-matching)的字段。 如果我们不是合并来自每个字段的分值,而是使用最佳匹配字段的分值作为整个查询的整体分值呢?这就会让包含有我们寻找的两个单词的字段有更高的权重,而不是在不同的字段中重复出现的相同单词。 #### dis_max查询 相比使用bool查询,我们可以使用dis_max查询(Disjuction Max Query)。Disjuction的意思"OR"(而Conjunction的意思是"AND"),因此Disjuction Max Query的意思就是返回匹配了任何查询的文档,并且分值是产生了最佳匹配的查询所对应的分值: ```Javascript { "query": { "dis_max": { "queries": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } } ``` // SENSE: 110_Multi_Field_Search/15_Best_fields.json 它会产生我们期望的结果: ```Javascript { "hits": [ { "_id": "2", "_score": 0.21509302, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } }, { "_id": "1", "_score": 0.12713557, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } } ] } ``` <!-- === Best Fields Imagine that we have a website that allows ((("multifield search", "best fields queries")))((("best fields queries")))users to search blog posts, such as these two documents: [source,js] -------------------------------------------------- PUT /my_index/my_type/1 { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } PUT /my_index/my_type/2 { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } -------------------------------------------------- // SENSE: 110_Multi_Field_Search/15_Best_fields.json The user types in the words ``Brown fox'' and clicks Search. We don't know ahead of time if the user's search terms will be found in the `title` or the `body` field of the post, but it is likely that the user is searching for related words. To our eyes, document 2 appears to be the better match, as it contains both words that we are looking for. Now we run the following `bool` query: [source,js] -------------------------------------------------- { "query": { "bool": { "should": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } } -------------------------------------------------- // SENSE: 110_Multi_Field_Search/15_Best_fields.json And we find that this query gives document 1 the higher score: [source,js] -------------------------------------------------- { "hits": [ { "_id": "1", "_score": 0.14809652, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } }, { "_id": "2", "_score": 0.09256032, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } } ] } -------------------------------------------------- To understand why, think about how the `bool` query ((("bool query", "relevance score calculation")))((("relevance scores", "calculation in bool queries")))calculates its score: 1. It runs both of the queries in the `should` clause. 2. It adds their scores together. 3. It multiplies the total by the number of matching clauses. 4. It divides the result by the total number of clauses (two). Document 1 contains the word `brown` in both fields, so both `match` clauses are successful and have a score. Document 2 contains both `brown` and `fox` in the `body` field but neither word in the `title` field. The high score from the `body` query is added to the zero score from the `title` query, and multiplied by one-half, resulting in a lower overall score than for document 1. In this example, the `title` and `body` fields are competing with each other. We want to find the single _best-matching_ field. What if, instead of combining the scores from each field, we used the score from the _best-matching_ field as the overall score for the query? This would give preference to a single field that contains _both_ of the words we are looking for, rather than the same word repeated in different fields. [[dis-max-query]] ==== dis_max Query Instead of the `bool` query, we can use the `dis_max` or _Disjunction Max Query_. Disjunction means _or_((("dis_max (disjunction max) query"))) (while conjunction means _and_) so the Disjunction Max Query simply means _return documents that match any of these queries, and return the score of the best matching query_: [source,js] -------------------------------------------------- { "query": { "dis_max": { "queries": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } } -------------------------------------------------- // SENSE: 110_Multi_Field_Search/15_Best_fields.json This produces the results that we want: [source,js] -------------------------------------------------- { "hits": [ { "_id": "2", "_score": 0.21509302, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } }, { "_id": "1", "_score": 0.12713557, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } } ] } -------------------------------------------------- -->