## 查询与过滤条件的合并
查询语句和过滤语句可以放在各自的上下文中。
在 ElasticSearch API 中我们会看到许多带有 `query` 或 `filter` 的语句。
这些语句既可以包含单条 query 语句,也可以包含一条 filter 子句。
换句话说,这些语句需要首先创建一个`query`或`filter`的上下文关系。
复合查询语句可以加入其他查询子句,复合过滤语句也可以加入其他过滤子句。
通常情况下,一条查询语句需要过滤语句的辅助,全文本搜索除外。
所以说,查询语句可以包含过滤子句,反之亦然。
以便于我们切换 query 或 filter 的上下文。这就要求我们在读懂需求的同时构造正确有效的语句。
## 带过滤的查询语句
#### 过滤一条查询语句
比如说我们有这样一条查询语句:
```Javascript
{
"match": {
"email": "business opportunity"
}
}
```
然后我们想要让这条语句加入 `term` 过滤,在收信箱中匹配邮件:
```Javascript
{
"term": {
"folder": "inbox"
}
}
```
`search` API中只能包含 `query` 语句,所以我们需要用 `filtered` 来同时包含
"query" 和 "filter" 子句:
```Javascript
{
"filtered": {
"query": { "match": { "email": "business opportunity" }},
"filter": { "term": { "folder": "inbox" }}
}
}
```
我们在外层再加入 `query` 的上下文关系:
```Javascript
GET /_search
{
"query": {
"filtered": {
"query": { "match": { "email": "business opportunity" }},
"filter": { "term": { "folder": "inbox" }}
}
}
}
```
## 单条过滤语句
在 `query` 上下文中,如果你只需要一条过滤语句,比如在匹配全部邮件的时候,你可以
省略 `query` 子句:
```Javascript
GET /_search
{
"query": {
"filtered": {
"filter": { "term": { "folder": "inbox" }}
}
}
}
```
如果一条查询语句没有指定查询范围,那么它默认使用 `match_all` 查询,所以上面语句
的完整形式如下:
```Javascript
GET /_search
{
"query": {
"filtered": {
"query": { "match_all": {}},
"filter": { "term": { "folder": "inbox" }}
}
}
}
```
## 查询语句中的过滤
有时候,你需要在 filter 的上下文中使用一个 query 子句。下面的语句就是一条带有查询功能
的过滤语句, 这条语句可以过滤掉看起来像垃圾邮件的文档:
```Javascript
GET /_search
{
"query": {
"filtered": {
"filter": {
"bool": {
"must": { "term": { "folder": "inbox" }},
"must_not": {
"query": { <1>
"match": { "email": "urgent business proposal" }
}
}
}
}
}
}
}
```
<1> 过滤语句中可以使用`query`查询的方式代替 `bool` 过滤子句。
>**提示**:
>我们很少用到的过滤语句中包含查询,保留这种用法只是为了语法的完整性。
>只有在过滤中用到全文本匹配的时候才会使用这种结构。
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion