[[stemming]]
== Reducing Words to Their Root Form
Most languages of the world are _inflected_, meaning ((("languages", "inflection in")))((("words", "stemming", see="stemming words")))((("stemming words")))that words can change
their form to express differences in the following:
* _Number_: fox, foxes
* _Tense_: pay, paid, paying
* _Gender_: waiter, waitress
* _Person_: hear, hears
* _Case_: I, me, my
* _Aspect_: ate, eaten
* _Mood_: so be it, were it so
While inflection aids expressivity, it interferes((("inflection"))) with retrievability, as a
single root _word sense_ (or meaning) may be represented by many different
sequences of letters.((("English", "inflection in"))) English is a weakly inflected language (you could
ignore inflections and still get reasonable search results), but some other
languages are highly inflected and need extra work in order to achieve
high-quality search results.
_Stemming_ attempts to remove the differences between inflected forms of a
word, in order to reduce each word to its root form. For instance `foxes` may
be reduced to the root `fox`, to remove the difference between singular and
plural in the same way that we removed the difference between lowercase and
uppercase.
The root form of a word may not even be a real word. The words `jumping` and
`jumpiness` may both be stemmed to `jumpi`. It doesn't matter--as long as
the same terms are produced at index time and at search time, search will just
work.
If stemming were easy, there would be only one implementation. Unfortunately,
stemming is an inexact science that ((("stemming words", "understemming and overstemming")))suffers from two issues: understemming
and overstemming.
_Understemming_ is the failure to reduce words with the same meaning to the same
root. For example, `jumped` and `jumps` may be reduced to `jump`, while
`jumping` may be reduced to `jumpi`. Understemming reduces retrieval
relevant documents are not returned.
_Overstemming_ is the failure to keep two words with distinct meanings separate.
For instance, `general` and `generate` may both be stemmed to `gener`.
Overstemming reduces precision: irrelevant documents are returned when they
shouldn't be.
.Lemmatization
**********************************************
A _lemma_ is the canonical, or dictionary, form ((("lemma")))of a set of related words--the
lemma of `paying`, `paid`, and `pays` is `pay`. Usually the lemma resembles
the words it is related to but sometimes it doesn't -- the lemma of `is`,
`was`, `am`, and `being` is `be`.
Lemmatization, like stemming, tries to group related words,((("lemmatisation"))) but it goes one
step further than stemming in that it tries to group words by their _word
sense_, or meaning. The same word may represent two meanings—for example,_wake_ can mean _to wake up_ or _a funeral_. While lemmatization would
try to distinguish these two word senses, stemming would incorrectly conflate
them.
Lemmatization is a much more complicated and expensive process that needs to
understand the context in which words appear in order to make decisions
about what they mean. In practice, stemming appears to be just as effective
as lemmatization, but with a much lower cost.
**********************************************
First we will discuss the two classes of stemmers available in Elasticsearch—<<algorithmic-stemmers>> and <<dictionary-stemmers>>—and then look at how to
choose the right stemmer for your needs in <<choosing-a-stemmer>>. Finally,
we will discuss options for tailoring stemming in <<controlling-stemming>> and
<<stemming-in-situ>>.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion