#空搜索
最基本的搜索API表单是**空搜索(empty search)**,它没有指定任何的查询条件,只返回集群索引中的所有文档:
```Javascript
GET /_search
```
响应内容(为了编辑简洁)类似于这样:
```Javascript
{
"hits" : {
"total" : 14,
"hits" : [
{
"_index": "us",
"_type": "tweet",
"_id": "7",
"_score": 1,
"_source": {
"date": "2014-09-17",
"name": "John Smith",
"tweet": "The Query DSL is really powerful and flexible",
"user_id": 2
}
},
... 9 RESULTS REMOVED ...
],
"max_score" : 1
},
"took" : 4,
"_shards" : {
"failed" : 0,
"successful" : 10,
"total" : 10
},
"timed_out" : false
}
```
## `hits`
响应中最重要的部分是`hits`,它包含了`total`字段来表示匹配到的文档总数,`hits`数组还包含了匹配到的前10条数据。
`hits`数组中的每个结果都包含`_index`、`_type`和文档的`_id`字段,被加入到`_source`字段中这意味着在搜索结果中我们将可以直接使用全部文档。这不像其他搜索引擎只返回文档ID,需要你单独去获取文档。
每个节点都有一个`_score`字段,这是**相关性得分(relevance score)**,它衡量了文档与查询的匹配程度。默认的,返回的结果中关联性最大的文档排在首位;这意味着,它是按照`_score`降序排列的。这种情况下,我们没有指定任何查询,所以所有文档的相关性是一样的,因此所有结果的`_score`都是取得一个中间值`1`
`max_score`指的是所有文档匹配查询中`_score`的最大值。
## `took`
`took`告诉我们整个搜索请求花费的毫秒数。
## `shards`
`_shards`节点告诉我们参与查询的分片数(`total`字段),有多少是成功的(`successful`字段),有多少的是失败的(`failed`字段)。通常我们不希望分片失败,不过这个有可能发生。如果我们遭受一些重大的故障导致主分片和复制分片都故障,那这个分片的数据将无法响应给搜索请求。这种情况下,Elasticsearch将报告分片`failed`,但仍将继续返回剩余分片上的结果。
## `timeout`
`time_out`值告诉我们查询超时与否。一般的,搜索请求不会超时。如果响应速度比完整的结果更重要,你可以定义`timeout`参数为`10`或者`10ms`(10毫秒),或者`1s`(1秒)
```javascript
GET /_search?timeout=10ms
```
Elasticsearch将返回在请求超时前收集到的结果。
超时不是一个断路器(circuit breaker)(译者注:关于断路器的理解请看警告)。
> ## 警告
> 需要注意的是`timeout`不会停止执行查询,它仅仅告诉你**目前**顺利返回结果的节点然后关闭连接。在后台,其他分片可能依旧执行查询,尽管结果已经被发送。
> 使用超时是因为对于你的业务需求(译者注:SLA,Service-Level Agreement服务等级协议,在此我翻译为业务需求)来说非常重要,而不是因为你想中断执行长时间运行的查询。
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion