[[char-filters]]
=== Tidying Up Input Text
Tokenizers produce the best results when the input text is clean, valid
text, where _valid_ means that it follows the punctuation rules that the
Unicode algorithm expects.((("text", "tidying up text input for tokenizers")))((("words", "identifying", "tidying up text input"))) Quite often, though, the text we need to process
is anything but clean. Cleaning it up before tokenization improves the quality
of the output.
==== Tokenizing HTML
Passing HTML through the `standard` tokenizer or the `icu_tokenizer` produces
poor results.((("HTML, tokenizing"))) These tokenizers just don't know what to do with the HTML tags.
For example:
[source,js]
--------------------------------------------------
GET /_analyzer?tokenizer=standard
<p>Some déjà vu <a href="http://somedomain.com>">website</a>
--------------------------------------------------
The `standard` tokenizer((("standard tokenizer", "tokenizing HTML"))) confuses HTML tags and entities, and emits the
following tokens: `p`, `Some`, `d`, `eacute`, `j`, `agrave`, `vu`, `a`,
`href`, `http`, `somedomain.com`, `website`, `a`. Clearly not what was
intended!
_Character filters_ can be added to an analyzer to ((("character filters")))preprocess the text
_before_ it is passed to the tokenizer. In this case, we can use the
`html_strip` character filter((("analyzers", "adding character filters to")))((("html_strip character filter"))) to remove HTML tags and to decode HTML entities
such as `é` into the corresponding Unicode characters.
Character filters can be tested out via the `analyze` API by specifying them
in the query string:
[source,js]
--------------------------------------------------
GET /_analyzer?tokenizer=standard&char_filters=html_strip
<p>Some déjà vu <a href="http://somedomain.com>">website</a>
--------------------------------------------------
To use them as part of the analyzer, they should be added to a `custom`
analyzer definition:
[source,js]
--------------------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_html_analyzer": {
"tokenizer": "standard",
"char_filter": [ "html_strip" ]
}
}
}
}
}
--------------------------------------------------
Once created, our new `my_html_analyzer` can be tested with the `analyze` API:
[source,js]
--------------------------------------------------
GET /my_index/_analyzer?analyzer=my_html_analyzer
<p>Some déjà vu <a href="http://somedomain.com>">website</a>
--------------------------------------------------
This emits the tokens that we expect: `Some`, ++déjà++, `vu`, `website`.
==== Tidying Up Punctuation
The `standard` tokenizer and `icu_tokenizer` both understand that an
apostrophe _within_ a word should be treated as part of the word, while single
quotes that _surround_ a word should not.((("standard tokenizer", "handling of punctuation")))((("icu_tokenizer", "handling of punctuation")))((("punctuation", "tokenizers' handling of"))) Tokenizing the text `You're my 'favorite'`. would correctly emit the tokens `You're, my, favorite`.
Unfortunately,((("apostrophes"))) Unicode lists a few characters that are sometimes used
as apostrophes:
`U+0027`::
Apostrophe (`'`)—the original ASCII character
`U+2018`::
Left single-quotation mark (`‘`)—opening quote when single-quoting
`U+2019`::
Right single-quotation mark (`’`)—closing quote when single-quoting, but also the preferred character to use as an apostrophe
Both tokenizers treat these three characters as an apostrophe (and thus as
part of the word) when they appear within a word. Then there are another three
apostrophe-like characters:
`U+201B`::
Single high-reversed-9 quotation mark (`‛`)—same as `U+2018` but differs in appearance
`U+0091`::
Left single-quotation mark in ISO-8859-1—should not be used in Unicode
`U+0092`::
Right single-quotation mark in ISO-8859-1—should not be used in Unicode
Both tokenizers treat these three characters as word boundaries--a place to
break text into tokens.((("quotation marks"))) Unfortunately, some publishers use `U+201B` as a
stylized way to write names like `M‛coy`, and the second two characters may well
be produced by your word processor, depending on its age.
Even when using the ``acceptable'' quotation marks, a word written with a
single right quotation mark—`You’re`—is not the same as the word written
with an apostrophe—`You're`—which means that a query for one variant
will not find the other.
Fortunately, it is possible to sort out this mess with the `mapping` character
filter,((("character filters", "mapping character filter")))((("mapping character filter"))) which allows us to replace all instances of one character with
another. In this case, we will replace all apostrophe variants with the
simple `U+0027` apostrophe:
[source,js]
--------------------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"char_filter": { <1>
"quotes": {
"type": "mapping",
"mappings": [ <2>
"\\u0091=>\\u0027",
"\\u0092=>\\u0027",
"\\u2018=>\\u0027",
"\\u2019=>\\u0027",
"\\u201B=>\\u0027"
]
}
},
"analyzer": {
"quotes_analyzer": {
"tokenizer": "standard",
"char_filter": [ "quotes" ] <3>
}
}
}
}
}
--------------------------------------------------
<1> We define a custom `char_filter` called `quotes` that
maps all apostrophe variants to a simple apostrophe.
<2> For clarity, we have used the JSON Unicode escape syntax
for each character, but we could just have used the
characters themselves: `"‘=>'"`.
<3> We use our custom `quotes` character filter to create
a new analyzer called `quotes_analyzer`.
As always, we test the analyzer after creating it:
[source,js]
--------------------------------------------------
GET /my_index/_analyze?analyzer=quotes_analyzer
You’re my ‘favorite’ M‛Coy
--------------------------------------------------
This example returns the following tokens, with all of the in-word
quotation marks replaced by apostrophes: `You're`, `my`, `favorite`, `M'Coy`.
The more effort that you put into ensuring that the tokenizer receives good-quality input, the better your search results will be.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion