#### 跨字段实体搜索(Cross-fields Entity Search)
现在让我们看看一个常见的模式:跨字段实体搜索。类似person,product或者address这样的实体,它们的信息会分散到多个字段中。我们或许有一个person实体被索引如下:
```Javascript
{
"firstname": "Peter",
"lastname": "Smith"
}
```
而address实体则是像下面这样:
```Javascript
{
"street": "5 Poland Street",
"city": "London",
"country": "United Kingdom",
"postcode": "W1V 3DG"
}
```
这个例子也许很像在[多查询字符串](../110_Multi_Field_Search/05_Multiple_query_strings.md)中描述的,但是有一个显著的区别。在多查询字符串中,我们对每个字段都使用了不同的查询字符串。在这个例子中,我们希望使用一个查询字符串来搜索多个字段。
用户也许会搜索名为"Peter Smith"的人,或者名为"Poland Street W1V"的地址。每个查询的单词都出现在不同的字段中,因此使用dis_max/best_fields查询来搜索单个最佳匹配字段显然是不对的。
#### 一个简单的方法
实际上,我们想要依次查询每个字段然后将每个匹配字段的分值进行累加,这听起来很像bool查询能够胜任的工作:
```Javascript
{
"query": {
"bool": {
"should": [
{ "match": { "street": "Poland Street W1V" }},
{ "match": { "city": "Poland Street W1V" }},
{ "match": { "country": "Poland Street W1V" }},
{ "match": { "postcode": "Poland Street W1V" }}
]
}
}
}
```
对每个字段重复查询字符串很快就会显得冗长。我们可以使用multi_match查询进行替代,然后将type设置为most_fields来让它将所有匹配字段的分值合并:
```Javascript
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
```
#### 使用most_fields存在的问题
使用most_fields方法执行实体查询有一些不那么明显的问题:
* 它被设计用来找到匹配任意单词的多数字段,而不是找到跨越所有字段的最匹配的单词。
* 它不能使用operator或者minimum_should_match参数来减少低相关度结果带来的长尾效应。
* 每个字段的词条频度是不同的,会互相干扰最终得到较差的排序结果。
<!--
=== Cross-fields Entity Search
Now we come to a common pattern: cross-fields entity search. ((("cross-fields entity search")))((("multifield search", "cross-fields entity search"))) With entities
like `person`, `product`, or `address`, the identifying information is spread
across several fields. We may have a `person` indexed as follows:
[source,js]
--------------------------------------------------
{
"firstname": "Peter",
"lastname": "Smith"
}
--------------------------------------------------
Or an address like this:
[source,js]
--------------------------------------------------
{
"street": "5 Poland Street",
"city": "London",
"country": "United Kingdom",
"postcode": "W1V 3DG"
}
--------------------------------------------------
This sounds a lot like the example we described in <<multi-query-strings>>,
but there is a big difference between these two scenarios. In
<<multi-query-strings>>, we used a separate query string for each field. In
this scenario, we want to search across multiple fields with a _single_ query
string.
Our user might search for the person ``Peter Smith'' or for the address
``Poland Street W1V.'' Each of those words appears in a different field, so
using a `dis_max` / `best_fields` query to find the _single_ best-matching
field is clearly the wrong approach.
==== A Naive Approach
Really, we want to query each field in turn and add up the scores of every
field that matches, which sounds like a job for the `bool` query:
[source,js]
--------------------------------------------------
{
"query": {
"bool": {
"should": [
{ "match": { "street": "Poland Street W1V" }},
{ "match": { "city": "Poland Street W1V" }},
{ "match": { "country": "Poland Street W1V" }},
{ "match": { "postcode": "Poland Street W1V" }}
]
}
}
}
--------------------------------------------------
Repeating the query string for every field soon becomes tedious. We can use
the `multi_match` query instead, ((("most fields queries", "problems for entity search")))((("multi_match queries", "most_fields type")))and set the `type` to `most_fields` to tell it to
combine the scores of all matching fields:
[source,js]
--------------------------------------------------
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}
--------------------------------------------------
==== Problems with the most_fields Approach
The `most_fields` approach to entity search has some problems that are not
immediately obvious:
* It is designed to find the most fields matching _any_ words, rather than to
find the most matching words _across all fields_.
* It can't use the `operator` or `minimum_should_match` parameters
to reduce the long tail of less-relevant results.
* Term frequencies are different in each field and could interfere with each
other to produce badly ordered results.
-->
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion